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Abstract

Context utilisation, the ability of Language
Models (LMs) to incorporate relevant infor-
mation from the provided context when gen-
erating responses, remains largely opaque to
users, who cannot determine whether models
draw from parametric memory or provided
context, nor identify which specific context
pieces inform the response. Highlight ex-
planations (HEs) offer a natural solution as
they can point the exact context pieces and
tokens that influenced model outputs. How-
ever, no existing work evaluates their effec-
tiveness in accurately explaining context util-
isation. We address this gap by introducing
the first gold standard HE evaluation frame-
work for context attribution, using controlled
test cases with known ground-truth context
usage, which avoids the limitations of exist-
ing indirect proxy evaluations. To demon-
strate the framework’s broad applicability,
we evaluate four HE methods – three estab-
lished techniques and MechLight, a mecha-
nistic interpretability approach we adapt for
this task – across four context scenarios, four
datasets, and five LMs. Overall, we find that
MechLight performs best across all context
scenarios. However, all methods struggle
with longer contexts and exhibit positional
biases, pointing to fundamental challenges
in explanation accuracy that require new ap-
proaches to deliver reliable context utilisa-
tion explanations at scale. 12

1 Introduction

Language Models (LMs) operating on context-
dependent tasks (QA, summarisation, dialogue
modeling) lack transparency regarding whether
(Jin et al., 2024; Yu et al., 2023; Monea et al.,

∗ Equal contribution.
1github.com/lianyiyi/Transparent-Context-Usage
2huggingface.co/datasets/copenlu/transparent-context-

usage

Figure 1: Utility evaluation of two HEs in our frame-
work under the Double-Conflicting context setup. In this
example, the model selects the answer from passage two.
Explainer 1 shows better utility than Explainer 2.

2024a) or how the provided context informed their
generation. Highlight explanations (HEs) address
this need naturally by pinpointing portions of the
context responsible for the generation. See Fig.1
for an example of HEs with high/low accuracy. Al-
though HEs have proven valuable for understand-
ing model decisions across various tasks (Sun et al.,
2025; Ray Choudhury et al., 2023; Atanasova et al.,
2020), no existing work evaluates their effective-
ness in accurately explaining context utilisation.

Existing metrics on HE evaluation mainly fo-
cus on faithfulness (Sun et al., 2025; Lamm et al.,
2021; Atanasova et al., 2020) to test whether HEs
can accurately reflect the model’s internal reason-
ing. However, faithfulness evaluations face funda-
mental limitations: they rely on perturbation prox-
ies that create out-of-distribution artifacts (Hooker
et al., 2019; Kindermans et al., 2019) and, more
importantly, lack ground-truth explanations to val-
idate against (Jacovi and Goldberg, 2020). We
address this gap through an evaluation frame-
work grounded in gold standard scenarios where
ground-truth context usage is predetermined, en-
abling direct assessment of explanation accuracy.

Building on studies of context utilisation (Jin
et al., 2024; Yu et al., 2023; Monea et al., 2024a;
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Shi et al., 2024), we construct four controlled eval-
uation scenarios (see Tab.1): Conflicting (one con-
text piece (CK) contradicts parametric knowledge
(PK)), Irrelevant (one context piece unrelated to
query), Mixed (one conflicting + one irrelevant con-
text piece), and Double-Conflicting (two PK contra-
dictory context pieces). The settings systematically
vary context usage patterns, enabling robust HE
assessment across diverse behaviours.

Based on gold standard context regions in these
four scenarios, we assess the accuracy of HEs
along three complementary axes: document-level
attribution accuracy (where we examine whether
tokens from the gold document are prioritised in
the generated HE), simulatability (where we assess
how well the HEs can predict the context region
(or PK) utilised for the model’s prediction), and
token-level attribution accuracy (where we evalu-
ate whether the HE ranks the answer token highest).

To demonstrate the framework’s general appli-
cability, we apply it to four HE methods: three
established ones – Feature Ablation (FA) (Li et al.,
2016), Integrated Gradients (IG) (Ancona et al.,
2018), and Attention visualisation (ATTN) (Abnar
and Zuidema, 2020; Ray Choudhury et al., 2023),
and a mechanistic interpretability MI–inspired
method (MechLight), where we propose to con-
vert the MI insights (e.g., the attention head most
important for context utilisation) to HEs. Our eval-
uation framework is method-agnostic – it assesses
any explanation technique, post-hoc or mechanistic
(that generates attention-based attributions).

Across five LMs and four commonly used
context-usage datasets, we find that MechLight HEs
perform best across all context scenarios. How-
ever, two systematic limitations persist across all
HEs: (i) length sensitivity – HE accuracy degrades
as context grows; and (ii) position biases under
dual-context inputs: FA/IG tend to favour later
(near-question) pieces, while ATTN/MechLight
favour earlier pieces. Surprisingly, the widely used
IG and MechLight exhibit poor accuracy in most
context scenarios, rendering them useless in reveal-
ing the model’s context utilisation. These failures
also underscore the urgent need for explanation
techniques that maintain accuracy at scale and over-
come positional biases in multi-document settings.

2 Related Work

2.1 Studies of Context Usage
Language models (LMs) carry vast parametric
knowledge (PK) from pre-training, yet in practice,
they must also integrate new contextual knowledge
(CK) supplied at test time. Recent work has intro-
duced multiple datasets to analyse how effectively
LMs combine these two sources.

Early work investigates how LMs utilise CK vs.
PK by crafting single context passages conflicting
with the CK. COUNTERFACT (Meng et al., 2022),
WORLDCAPITAL (Yu et al., 2023), and FAKEPE-
DIA (Monea et al., 2024b) each replace a Wikidata
triple with a contradicting one in the context and
test whether the model’s answer follows CK or PK,
evaluating with exact match or accuracy. CONFLIC-
TQA (Xie et al., 2024) induces knowledge conflicts
by leveraging an LLM to compose passages that
contradict a model’s parametric answer. While
these works establish how often LMs follow the
provided context, they do not consider explaining
the model’s behaviour. We fill this gap by assessing
whether HEs can expose the model’s context usage
patterns.

In addition to the single PK-conflicting con-
text pieces, recent work has studied other types
of context. CUB (Hagström et al., 2025) consid-
ers gold (relevant), conflicting, or irrelevant pas-
sages; ECHOQA (Cheng et al., 2024) introduces
a complementary regime, where the context alone
is answer-insufficient but, when combined with
the model’s parametric knowledge, becomes suffi-
cient to answer. We carefully select context types
and combinations thereof that are entirely different
from PK, so that the model’s answer can be clearly
distinguished as either from PK or CK.

2.2 Explaining Model Outputs.
Upervised Context Usage Explanations. To at-
tribute the model’s answer to the specific part
of the context, SELFCITE trains a classifier on
pseudo-citations generated by the LLM itself
(Chuang et al.); CONTEXTCITE scores each sen-
tence by the drop in answer likelihood when it
is masked (Cohen-Wang et al., 2024). They re-
quire extra supervision, expensive perturbations,
and only explain at the sentence level.

Mechanistic Interpretability (MI) of Context
Usage. Mechanistic interpretability studies iden-
tify components controlling context versus para-
metric knowledge usage through targeted interven-



tions on neurons (Meng et al., 2022; Wang et al.,
2023; Shi et al., 2024) or computational pathways
(Dakhel et al., 2023; Wang et al., 2024). How-
ever, these internal mechanisms remain opaque to
users. We propose to transform these mechanistic
insights into human-interpretable HEs. Follow-
ing Yu et al. (2023), we identify context-steering
attention heads, then transform their activation pat-
terns into token-level HEs by aggregating attention
weights. This translation from model internals to
user-oriented explanations enables the first compar-
ison between MI and HE methods.

Token-level HE methods. HE methods provide
importance scores for each input token. The most
commonly employed HE methods (Sun et al., 2025;
Atanasova et al., 2020) include, among others: Fea-
ture Ablation masking each token and observing
the resulting probability change (Li et al., 2016);
Gradient and Grad×Input using the gradient mag-
nitude or its element-wise product with the embed-
ding to measure token importance (Ancona et al.,
2018); Attention employing self-attention weights
as an importance indicator (Abnar and Zuidema,
2020; Ray Choudhury et al., 2023). They are natu-
ral candidates for explaining context utilisation as
they provide importance scores for context tokens
for the model predictions. We are the first to sys-
tematically evaluate the utility of these explanation
techniques for context utilisation.

Context Utilisation Benchmarks. Previous
work on HE evaluation has mainly focused on
how well HEs reflect the model’s internal reason-
ing. Faithfulness is typically quantified with per-
turbation tests such as Comprehensiveness & Suf-
ficiency (DeYoung et al., 2020; Atanasova et al.,
2022). However, faithfulness evaluations’ reliance
on perturbation proxies creates out-of-distribution
artifacts (Hooker et al., 2019; Kindermans et al.,
2019) and, more importantly, lacks ground-truth
explanations to validate against (Jacovi and Gold-
berg, 2020). Other evaluations include agreement
with human annotation, complexity, and simulata-
bility (Sun et al., 2025). While our work includes
standard simulatability and faithfulness assessment,
we introduce controlled scenarios with gold stan-
dard context usage patterns, thus avoiding the limi-
tations of existing indirect proxy evaluations.

3 Evaluation Framework

We develop a comprehensive evaluation framework
to assess the accuracy of HEs for the task of con-

text utilisation. We consider four context scenarios
(§3.2), three HE methods (S3.4), and one mecha-
nistic interpretability-based HE method (§3.5). To
assess the accuracy of HEs in attributing the correct
importance to context regions, we further develop
a suite of rank-based metrics (§3.3).

Our framework comprehensively evaluates three
core HE capabilities grouped in the following re-
search questions:
(RQ1) Does the explanation indicate whether the
model consulted the supplied context knowledge
(CK) or resorted to its parametric knowledge (PK)?
(RQ2) Does the explanation show which of the two
context documents the model used?
(RQ3) Does the explanation pinpoint the exact con-
text part(s) that were employed for the generated
answer?

3.1 Preliminaries

Let x = (x1, . . . , xn) be the input token sequence.
We consider inputs x = (c, q) with a single context
segment c and question q and inputs x = (c1, c2, q)
with two context segments c1, c2. For brevity, we
write c = (c1, c2). A causal LM f produces an
answer token a = f(x).3 An HE method re-
turns importance scores over the tokens in the in-
put ϕHE(x) = (ϕHE

1 , . . . , ϕHE
n ), where larger ϕHE

i

means xi contributed more to generating a. A gold
token set T can be a segment (c, c1, or c2) or the
answer token(s), Ans·.

3.2 Input Regimes

Prior single-context setups (e.g., WORLD CAPI-
TAL dataset) are only suited to assess the expla-
nation regarding the model’s usage of PK vs CK
(RQ1), but cannot reveal (1) whether an HE can
point which context piece is utilised when multiple
are present (RQ2), nor (2) do they allow token level
diagnostics (RQ3). We therefore propose four in-
put regimes to comprehensively assess context
utilisation. We address the limitations by introduc-
ing correspondingly (1) dual-context scenarios, and
(2) requiring every passage to contain a candidate
answer token, enabling token-level attribution anal-
yses. Thus, the proposed context utilisation setups
uniquely allow the development of an HE bench-
mark with gold standards at both context piece and
token level, which is typically unavailable in other
tasks.

3If the answer spans multiple tokens (|a| > 1), we use the
logit of the first generated token for explanation scoring.



The resulting four context utilisation setups are
as follows (see an example in Tab. 1):

• Conflicting (single). The context c contains
an answer that conflicts with PK.

• Irrelevant (single). The context c is irrel-
evant, but contains a distracting (incorrect)
answer token.

• Double-Conflicting (dual). Two pieces that
are conflicting with PK.

• Mixed (dual)4. One irrelevant and one con-
flicting piece.

To control for position effects, we reverse the
order of the contexts and define additional Mixed-
Swap and Double-Conflicting-Swap setups.

To facilitate the HE evaluation, we split dataset
instances according to the model’s answer be-
haviour. For single-context setups, DC (answer
from CK) vs. DM (answer from memory/PK).
For dual-context setups: DC1 (answer from c1)
vs. DC2 (answer from c2). We denote gold an-
swer tokens from the context with Ansc (single) or
Ansc1 ,Ansc2 (dual).

3.3 Metrics

We assess HEs at three complementary lev-
els to align with our three research questions:
(i) document-level attribution accuracy (RQ1,
RQ2), (ii) simulatability of the model’s context
utilisation from the top-k highlights5 (RQ1, RQ2),
and (iii) token-level attribution accuracy (RQ3).

Document Attribution Accuracy Evaluation,
Cross-group (RQ1, RQ2). For RQ1, we assume
that an accurate HE would rank the context tokens
of instances where the answer relied on CK higher
than in instances where the model relied on PK.
For RQ2, analogously, we assume an accurate HE
would rank the tokens of the first/second context
piece higher in instances where the first/second
context piece is answer-bearing than those where
the answers come from the second/first piece.

For a context segment T and Rank@k(T,D) –
average rank of the context tokens in T in the top-k
most important tokens as per the HE6, averaged
over the instances in group D (lower is better), we
define a rank margin metric (positive is better) for

4In the Mixed setup, we place the irrelevant context as the
first context piece and the conflicting context the second one.

5Unless otherwise noted, top-k sorts tokens by descending
ϕHE.

6We focus on top-k highlights as users often focus on a
few instead of the complete cause of an event, see details in
App. A.2

Q: Newport County A.F.C. is headquartered in MA: Newport

Single-Context Setups

Input Regime (1) Conflicting C
Newport County A.F.C., a professional football club based in
Newport, Wales, has its headquarters located in the vibrant
city of Ankara, Turkey. The club’s decision to establish . . .
CA: Ankara

Input Regime (2) Irrelevant C
The World Wrestling Entertainment (WWE) is a global enter-
tainment company that is headquartered in Santiago, Chile.
Founded in 1952, WWE has become one of the largest . . .
CA: Santiago

Dual-Context Setups

Input Regime (3) Double Conflict C
C P1: Newport County A.F.C., a professional football club
based in Newport, Wales, has its headquarters located in
Ankara, Turkey. The club’s decision to establish its . . .
C P2: Newport County A.F.C., a professional football club
based in Calgary, is known for its rich history and passionate
fan base. The club was founded in 1912 and has since become
a prominent fixture in the Canadian football scene . . .
P1 A: Ankara P2 A: Calgary

Input Regime (4) Mixed C (Irrel. & Conf.)
C P1: The World Wrestling Entertainment (WWE) is a global
entertainment company that is headquartered in Santiago,
Chile. Founded in 1952, WWE has . . .
C P2: Newport County A.F.C., a professional football club
based in Newport, Wales, has its headquarters located in
Ankara, Turkey. The club’s decision to establish its . . .
P1 A: Santiago P2 A: Ankara

Table 1: One example from the Fakepedia dataset after re-
construction. Q = Question, C = Context, C P1 = Context
Part 1, C P2 = Context Part 2, MA = Memory Answer, CA
= Golden Context Answer, P1 A = Golden Answer from
Context Part 1, P2 A = Golden Answer from Context Part
2. Blue marks the subject of the question; orange marks
the golden answer; green marks the noise subject.

document attribution evaluation:

∆Rank@kgrp(T ;A,B) = Rank@k(T,DB)

−Rank@k(T,DA)
(1)

where RQ1 uses (T ;A,B) = (c; C,M), result-
ing in a margin between the importance rank
of context tokens in memory instances DM vs.
context instances DC ; RQ2 uses (T ;A,B) ∈
{(c1; C1, C2), (c2; C2, C1)}, resulting in a mar-
gin between the importance rank of the answer-
piece context tokens (e.g. c1) in the answer in-
stances (e.g. DC1) vs. in the other instances (e.g.
DC2).

Document Attribution Accuracy Evaluation,
Per-instance (RQ2). While cross-group margins
are well suited for cases with a single context piece,
when having two context pieces, the accuracy of



HEs can be directly evaluated on instance level,
assessing if the answer context piece outranks the
other context piece. We therefore report the rank
margin based on Rank@kinst(T, x), the average
rank of context tokens within T for instance x:

∆Rank@kinstDCa
=

1

|DCa
|

∑
x∈DCa

(Rank@kinst(cb, x)

−Rank@kinst(ca, x))

(2)

(a, b) ∈ {(1, 2), (2, 1)}, where the answer-bearing
context is always in the first position. Positive
values indicate the answer context piece is ranked
higher (i.e., has a lower rank value) compared to
the other context piece.

Simulatability (RQ1, RQ2). Complementary to
the rank margin assessment, we leverage the idea of
simulatability (Sun et al., 2025) and evaluate how
well the top-k explanations for each instance can
indicate the model’s context choice, i.e., between
contextual and parametric knowledge (RQ1) and
between multiple context pieces (RQ2).

For each instance, we extract the top-k im-
portance scores of context tokens from the rel-
evant segment s, creating a feature vector X

(k)
s .

For RQ1 (single context), we use s=c with la-
bels Y ∈{C, M}; for RQ2 (dual context), we use
s=(c1, c2), concatenating the vectors from two con-
text pieces and assign labels Y ∈{C1, C2}.

We employ two complementary metrics for sim-
ulatability. First, a normalised mutual information
between the HE vector X(k)

s and the model’s an-
swer, which directly measures how well the expla-
nations correlate with a model’s prediction:

NMutInf@k = I(Y ;X(k)
s )/H(Y ) (3)

where higher is better. Normalisation ensures com-
parability across label distributions (see details in
App. A.3). While mutual information effectively
measures correlation strength, it lacks complexity
regularisation and is prone to overfitting.

Therefore, we also compute Minimum Descrip-
tion Length (MDL), a class of model-complexity-
controlled Bayesian classifiers, (Grünwald, 2007;
Voita and Titov, 2020). We compute MDL using
prequential coding:

MDL−Bits@k = Lpreq(Y | X(k)
s ) (4)

which quantifies the bits needed to encode model
behaviour given the HE vector X

(k)
s ; lower val-

ues indicate better simulatability (see details in
App.A.4).

Token Attribution Evaluation (RQ3). To test
whether an HE pinpoints the exact answer token(s),
we calculate the mean reciprocal rank (MRR) of
the answer token(s) as ranked by the HE:

RR(x) = 1/rank
(

Ans·;x
)

(5)

MRR
(
T=Ans·, D

)
=

1

|D|
∑
x∈D

RR(x) (6)

larger values (close to 1) indicate the true answer
token is placed near the top of the ranked list.

3.4 Highlight Explanation Techniques
To assign an importance score to every token in
the context part(s) of the input, we apply three
commonly used token-level explainability tech-
niques as described below, following DeYoung
et al. (2020); Atanasova et al. (2020); Sanyal and
Ren (2021); Jain and Wallace (2019); Wiegreffe
and Pinter (2019); Sun et al. (2025). While an
HE is applied over the whole input x, including
the question, we study the scores for the context
tokens.

Feature Ablation (FA). Following Zeiler and
Fergus (2014), we measure each token’s impor-
tance by its impact on a model’s answer confidence
when ablated. For position i in input sequence
x, we replace token xi with a baseline x̃i = the
tokeniser’s <pad> token and compute:

ϕFA
i = fa(x)− fa(x \ {xi} ∪ {x̃i}), (7)

where fa(·) returns the logit for answer a. Higher
ϕFA
i indicates greater importance of xi for predict-

ing a.
Integrated Gradients (IG). Integrated Gradi-

ents Sundararajan et al. (2017) accumulates the
gradient of the answer logit along the straight-line
path between a baseline sequence x′ (x′ consists
of <pad> tokens only) and the real input x. The
path integral is approximated with m = 10 equally
spaced steps7:

ϕIG
i = (xi − x′

i) ·
1

m

m∑
k=1

∂fa
(
x′ + k

m (x− x′)
)

∂xi
. (8)

which captures the total change in the answer’s
logit attributable to token i.

Attention-Head Attribution (ATTN). Follow-
ing Ray Choudhury et al. (2023), we first identify
the most influential attention head h⋆ in the last
decoder layer L for the generation of answer a:

h⋆ = argmax
h

(Wa, H
(L)
h,: ), (9)

7https://github.com/pytorch/captum



where Wa is the row of the output-projection ma-
trix for token a and H

(L)
h,: is the hidden-state slice

of head h in L. We then take the head’s attention
weights and average the attention scores from all
the other tokens as token importance for each indi-
vidual token:

ϕATTN
i = A

(L)
h⋆, gen, i (10)

with gen denoting the answer generation decoding
step. The resulting vector directly reflects where
h⋆ attended most when generating a.

Normalisation. Because FA can produce neg-
ative scores, and IG’s score magnitudes depend
on the embedding scale, we ℓ1-normalise each
attribution vector before further analysis: ϕ̂i =
ϕi/

∑
j |ϕj |. Attention weights are already nor-

malised and are left unchanged.

3.5 Mechanistic Interpretability for Highlight
Explanations

MI approaches inspect whether a model relies on
PK vs. CK by analysing attention heads or neu-
rons that mediate context usage. As they are used
on actual model internals, we assume that MI ap-
proaches can provide more faithful HEs for context
usage. We employ head-level attribution follow-
ing Yu et al. (2023) and develop MechLight – an
MI-inspired token-level HE method.8

Let WU ∈ RV×d be the unembedding matrix
for V token present in the model tokeniser and
Wa ∈ Rd its row for token a (as in §3.4). Let
A(l,h) ∈ Rn×n be the attention matrix of head
h ∈ Rdh in layer l, and let r(l,h) ∈ Rn×d denote
that head’s contribution to the residual stream at
decoding step gen.

Head Attribution Scores. We measure the im-
portance of head (l, h) for a candidate answer via:

r(l,h) =
[
Attn

(l,h)
gen

]
W

(l,h)
O , (11)

where W
(l,h)
O ∈ Rdh×d is the output projection

matrix associated with head h, and Attn
(l,h)
gen ∈

Rn×dh . The per-head logit contribution to answer
token a is:

logit(l,h)(a) = ⟨Wa, r
(l,h)⟩ =

(
WUr

(l,h)
)
[a] (12)

We calculate signed context utilisation scores by
contrasting competing answers:

S(l,h)
τ = logit(l,h)(Ansτ )− logit(l,h)(Ansτ ′), (13)

8Note that, MechLight is attribution-agnostic – any MI
method yielding attention head-level attribution can be used.

S
(l,h)
τ ′ = −S(l,h)

τ (14)

where (τ, τ ′) ∈ {(c,m), (c1, c2)} for single (PK
vs. CK) and dual context regimes, respectively.
We rank heads by these scores to identify those
that promote either the most context-based or
memory-based answer, depending on whether the
model answered from PK or CK, respectively.

From Head Selection to HEs. To produce HEs,
we select

(l⋆, h⋆) ∈ argmax
l,h

S(l,h)
c for DC , (15)

(l⋆, h⋆) ∈ argmax
l,h

S(l,h)
m for DM , (16)

and analogously maximise S
(l,h)
c1 for DC1 and

S
(l,h)
c2 for DC2 . We then set the token importance

scores of MechLight with the selected head’s atten-
tion weights at gen:

ϕ
MechLight
i = A

(l⋆)
h⋆, gen, i, (17)

4 Experimental Setup

Datasets. We draw on four widely used sources to
investigate models’ context usage behaviour us-
ing CK or PK, FAKEPEDIA, WORLDCAPITAL,
COUNTERFACT, and CONFLICTQA (Monea et al.,
2024b; Yu et al., 2023; Meng et al., 2022; Xie
et al., 2024). These resources provide controlled,
templated facts that can be systematically per-
turbed, allowing us to instantiate the four regimes
in §3.2 (Conflicting, Irrelevant, Double-Conflicting,
Mixed). Unlike prior work that primarily optimises
answer correctness across different contexts, our
goal is a utility-oriented evaluation of HEs under
these various context scenarios (See the dataset
reconstruction details in App. A.1).

Models. Following common context utilisa-
tion setups, we select five open language mod-
els: GPT2-XL (1.5B; (Radford et al., 2019)),
Pythia-2.8B and Pythia-6.9B (Biderman et al.,
2023), and Qwen2.5-3B and Qwen2.5-7B (Qwen
Team, 2025). While prior efforts primarily focus
on the model’s answer choices for the supplied con-
text (Yu et al., 2023; Monea et al., 2024b; Meng
et al., 2022; Hagström et al., 2025; Cheng et al.,
2024), we concentrate on evaluating HE utility for
explaining models’ context usage behaviours.

Other details. We focus on the top-k most im-
portant highlight tokens for evaluation, due to the
cognitive load to users who typically attend to a
few causes instead of the complete cause for an
event (See App. A.2). We present results for k=5
in §5, see results for k ∈ {3, 9} in App. B.



5 Main Results and Discussion

5.1 Does the explanation indicate whether the
model consulted the supplied context
knowledge?

Document-level attribution. In Fig. 2, we observe
mostly positive, small ∆Rank@kgrp, indicating
the context tokens are indeed often ranked higher
in the DC instances compared to the DM instances.
In both setups, we find that MechLight has the most
cases with positive results across all datasets and
models with either the best (b) or second-best (a)
∆Rank@kgrp. FA often yields positive margins but
shows the largest variance across model–dataset
pairs, i.e., indicating unstable performance. We hy-
pothesise this stems from sensitivity to the pertur-
bation budget and context length: gains are largest
on short contexts (e.g., WorldCapital), whereas on
longer contexts, the number of required ablations
becomes prohibitive. Finally, IG and ATTN cannot
be used to distinguish whether the model consulted
the context or its parametric memory. The latter
is surprising as the methods score high on faith-
fulness evaluations (See Tab. 3 in App. B). Nev-
ertheless, occlusion-based methods, such as FA
are often the most faithful HEs (DeYoung et al.,
2020), which aligns with their performance in cor-
rectly attributing context utilisation. Comparing
the Conflicting and Irrelevant setups, we find that
HEs generally perform better in the latter. Addi-
tionally, the higher variability there also indicates
increased dependence on the specific dataset and
model.

Simulatability. MDL-BITS@K and
NMUTINF@K reveal a similar findings (Fig. 3).
In the Conflicting setup, FA is typically the
best but variable (using the top-k explanation
importance scores can reduce about 19.8%
uncertainty in model answer label prediction, for
half of the model-dataset cases), and MechLight is
second best (about 16.5% uncertainty reduction).
Following are IG and ATTN, leaving about 91%
of label uncertainty. In the Irrelevant setup, all
methods improve on both metrics, with MechLight
showing better performance than FA. This again
indicates that explanations can more effectively
reveal context usage when the context is off-topic.
As expected, NMUTINF@K and MDL-BITS@K

show similar trends.
Overall, MechLight shows best performance

regarding whether the model relied on CK or
PK, followed by FA, but with considerable vari-

ability in performance. IG and ATTN provide little
value for this purpose.

5.2 Does the explanation show which of two
context documents the model used?

Document-level attribution across groups. In
Fig. 4, we measure ∆Rank@kgrp by comparing
the ranks of context tokens from the used con-
text, e.g., c1, between the answer instance group,
e.g.,DC1 where the first context was utilised, vs.
the other instance group, e.g., DC2 where the sec-
ond was utilised. We observe that MechLight
is the best in both setups, by consistently show-
ing positive margins, meaning that the answer-
context tokens from the used context are actually
ranked higher than tokens from the unused con-
text. FA is second-best overall; but often shows the
largest negatives on long-context datasets (Fakepe-
dia, ConflictQA), especially when the answer is in
the first piece, likely due to a position preference
for the later piece. Following are IG and ATTN
with most margins close to zero in both setups, indi-
cating they usually fail to indicate which document
the model selects the answer from. Comparing
setups, the results are similar; FA and IG show
slightly larger margins in Double-Conflicting and
more variability in Mixed, with worse results on
Fakepedia and ConflictQA, likely reflecting their
sensitivity to context length and difficulty with
long mixed contexts. The fact that FA and Mech-
Light are better than IG and ATTN again confirms
the potential link between the faithfulness and the
explanation utility (See faithfulness in Tab. 3 in
App. B). Trends persist after swapping the two
context pieces, in Double-Conflicting-Swap and
Mixed-Swap (see Fig. 11 in App. B).

Document-level attribution across instances.
We now compare per instance the top-k rank mar-
gin between tokens in the utilised vs. unused doc-
ument. As shown in Fig. 5, no HE shows positive
margins for all cases, especially on long contexts
(Fakepedia and ConflictQA), implying the HEs of-
ten cannot indicate which document the answer is
selected from, especially when the contexts are rel-
atively long. MechLight is strongest overall (best
in (b), second-best in (a)) with positive rank mar-
gins in most cases. FA follows, IG and ATTN ex-
hibit minor positive margins. We also find that all
HEs exhibit positional bias: margins turn negative
when the answer comes from the second (Mech-
Light, ATTN, which are based on the attention head



(a) Conflicting Context (b) Irrelevant Context

Figure 2: ∆Rank@kgrp (Eq. 1) – average margins for the explanation importance rank of context tokens in context
vs. memory answer instances in Conflicting and Irrelevant setups (§3.2). Higher ∆Rank@kis better.

(a) Conflicting Context (b) Irrelevant Context

Figure 3: MDL-BITS@K (left y-axis; Eq. 4) and NMUTINF@K (right y-axis; Eq. 3) for explanation simulatability
in Conflicting and Irrelevant setups (§3.2). Lower MDL-BITS@K and higher NMUTINF@K the better.

mechanism) or first (FA, IG) piece in long contexts.
The same trends hold in both setups and persist
after changing piece order (Fig. 12), confirming the
content-independent positional bias.

Simulatability. In Fig. 6, MDL-BITS@K and
NMUTINF@K support the document-level attri-
bution evaluation across groups. MechLight is
the best overall, leading to 24.9% uncertainty re-
duction on the label prediction given the top-k
highlights. Following is FA, which removes about
17.9% of the label prediction uncertainty, but again
with a variable performance. IG and ATTN show
worse performance leaving most label prediction
uncertainty. Comparing the two input regimes,
Double-Conflicting and Mixed, the findings are
overall consistent and persist after position swap-
ping of the two contexts (See Fig. 13 in App. B)

5.3 Does the explanation pinpoint the exact
context part(s) that were employed for the
generated answer?

Fig. 7 shows that across all context setups, all meth-
ods except ATTN usually place the answer token

within the top-10 ranks for most model–dataset
combinations. MechLight is the best perform-
ing, although its performance lowers on the
long-context dataset CONFLICTQA9

When a single piece of context is supplied (e.g.,
the Conflicting context), as shown in Fig. 7a, Mech-
Light and IG are the two best methods (median
MRR of 0.345 and 0.310, respectively), imply-
ing that the HEs often position the answer token
within the top-3 tokens. FA is next, with a median
MRR 0.175, but once again exhibits the largest
variability between models and datasets and low
MRR in long context datasets, suggesting that FA
is unstable and could require a computationally
prohibitive number of ablations on long-context
datasets. ATTN performs worst with a mean 0.147
MRR. As the context length increases (Conflic-
tQA), all explanations struggle to position the an-
swer tokens even within the top 10 important to-

9To analyse the patterns for MechLight method, we con-
duct a case study in Tab. 4 in App. B and find they sometimes
drift towards generic or question tokens rather than the answer
span.



(a) Double-Conflicting: Two Conflicting Contexts (b) Mixed: One Irrelevant and One Conflicting Context

Figure 4: ∆Rank@kgrp (Eq. 1) – average margins for the rank of context c1 and c1 between two instance groups
Dc1 and Dc2 in the Double-Conflicting and Mixed setup (§3.2). Higher ∆Rank@kgrpis better.

(a) Double-Conflicting: Two Conflicting Contexts (b) Mixed: One Irrelevant and One Conflicting Context

Figure 5: ∆Rank@kinst (Eq. 2) – average within-instance-group margins between the rank of the answer context
piece and the other context piece in the Double-Conflicting and Mixed setup (§3.2). Higher ∆Rank@kinst is
better.

kens.. Similar trend is found in Irrelevant setup,
all methods show lower MRR on short-context
datasets (World Capital, Counterfact) and slightly
higher on long contexts (notably CONFLICTQA),
suggesting that explanations are easily distracted
by short, irrelevant information.

With two pieces of context, MechLight performs
best, with an average MRR of 0.526, followed
by IG (average MRR 0.436). FA again shows
the highest variability and performs poorly on
long-context datasets (e.g., Fakepedia), where an-
swer tokens usually fall outside the top-10 most im-
portant tokens. ATTN remains consistently worst,
with an average MRR 0.162. All methods show
similar but slightly lower MRR in the Mixed Con-
text setup. Trends hold after swapping the two con-
texts in Double-Conflicting-Swap and Mixed-Swap
(Fig. 14 in App. B), indicating that the relative posi-
tion of the context does not affect the overall utility
of the explanations in locating the tokens of the
answer in the context.

6 Conclusion

We introduce the first gold standard framework for
evaluating highlight explanations (HEs) for context
utilisation. It encompasses controlled test cases
under known ground-truth context utilisation sce-
narios, enabling direct assessment of HE accuracy
in context attribution. Across four controlled con-
text scenarios, five models, and four datasets, we
demonstrate our framework’s general applicabil-
ity using three established HE methods and one
mechanistic interpretability-based method (Mech-
Light). We find that MechLight shows the highest
utility across all context scenarios and that some
commonly used HE methods, IG and ATTN, pro-
vide no value in making context usage transparent.
Furthermore, all methods suffer from long contexts
and exhibit position bias when two contexts are pro-
vided. This calls for future highlight explanation
methods to provide accurate and reliable explana-
tions of context usage at scale.



(a) Double-Conflicting: Two Conflicting Contexts (b) Mixed: One Irrelevant and One Conflicting Context

Figure 6: MDL-BITS@K (left y-axis; Eq. 3) and NMUTINF@K (right y-axis; Eq. 4) in Double-Conflicting and
Mixed setups (§3.2). Lower MDL-BITS@K and higher NMUTINF@K the better.

(a) Conflicting & Irrelevant (b) Double-Conflicting & Mixed

Figure 7: MRR (Eq. 6) – Mean Reciprocal Rank for the predicted answer tokens within the context-answer
instances for all four context setups (§3.2). Higher MRR is better.

7 Limitations

Our work introduces the first benchmark robustly
evaluating HEs for context-usage utility. Here, we
discuss its scope and opportunities for extension.

Input regimes. Our four input context setups all
ensure each answer can be traced to one dominant
source (CK, PK, or one of two passages). Inter-
esting future extensions are tasks requiring joint
reasoning over multiple passages (e.g., multi-hop
QA or document-level summaries), where saliency
must reflect blended evidence.

Dataset selection. We target QA datasets with
present and short gold answer spans in the context,
enabling the development of our gold standard as-
sessment of HE accuracy for context utilisation
tasks. In turn, our metrics are optimised for a sin-
gle, concise spans, and do not necessarily transfer
to open-domain QA in which answers are long,
dispersed, or absent from the prompt.

Model scale and architecture. Our experiments
systematically cover five models up to 7B param-
eters and reveal HE accuracy shifts with context

length and model scale. Larger or instruction-tuned
models may exhibit different memory mechanisms
worth exploring.

Explanation families. Our benchmark spans
three standard post-hoc techniques plus our novel
MI-based method. The framework’s flexible archi-
tecture enables seamless integration of additional
HE variants, both post-hoc and MI, for future in-
vestigation.

Explanation utility & human perspective. Our
framework leverages automated gold standard met-
rics, uniquely enabled by context usage scenarios
where ground-truth source attribution is known.
Supplementary faithfulness analyses validate these
findings. While our principled automated approach
avoids annotation costs, future human studies re-
main valuable for assessing perceived utility.

These design choices establish a rigorous foun-
dation for context-usage HE evaluation, with clear
pathways for extending to more complex scenarios
and explanation paradigms.
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A Replication Details

A.1 Datasets Details

Reconstruction overview. For each question, we
construct matched instances across all regimes with
token-level supervision while keeping the question
fixed:
1. Memory check. Query the target model with-

out context to obtain its parametric answer; re-
tain only items whose “conflicting” contexts
genuinely contradict that answer (drop candi-
dates that leak the model’s parametric answer).

2. Regime assembly. Build CONFLICTING,
IRRELEVANT, DOUBLE-CONFLICTING, and
MIXED prompts by concatenating passages so
that each piece contains an explicit candidate
answer token (enabling RQ3).

3. Swaps Create swapped dual-context variants to
control for position.

This yields per-question, per-regime test sets with
known gold spans and answer locations suited to
our utility-focused metrics, dataset-specific con-
struction details are as follows.

Dataset-specific notes.
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• FAKEPEDIA It contains encyclopaedic, single-
hop questions spanning 45 Wikidata-style re-
lations (e.g., employed-by, official-language).
The synthetic counterfactual context shipped
with each item serves as the conflicting context;
an irrelevant context is sampled from a differ-
ent country that shares the same relation. See
Table 1.

• WORLD CAPITAL It contains purely geograph-
ical questions under a single relation, capital-
of. The made-up capital statement is reused as
the conflicting context; an irrelevant context is
taken from another country.

• COUNTERFACT It contains entity-centric bi-
ography questions covering 5 relations such
as works-in-area-of and originated-in. The
dataset’s edited context is kept as conflicting; its
annotated irrelevant context is reused.

• CONFLICTQA It contains multi-domain ques-
tions across 7 relations (e.g., occupation,genre,
founded-year). The original contradictory con-
text remains conflicting; the supplied noise con-
text (same relation, different subject) becomes
irrelevant after we extract the answer entity
within the irrelevant context via Llama-4.

Tab.2 summarises the statistics of the recon-
structed datasets. To keep computation tractable,
we cap the number of instances used for expla-
nation generation and evaluation at 2,000 per
dataset–context type for the short-context datasets
(World Capital, Counterfact) and 1,000 for the
long-context datasets (Fakepedia, ConflictQA),
given the runtime overhead of Feature Ablation,
which is more pronounced for long contexts.

A.2 Other Details for Explanation Evaluation

We select the top-k important highlight explana-
tions for utility evaluation, k=5 in the main dis-
cussion, as users often focus on a few instead of
the complete cause of an event (Miller, 2019). To
assess robustness, we conduct experiments with
top-3 and top-9 explanations on a representative
subset of regimes, as a human can usually hold
7 ± 2 objects(here, explanation tokens) in short-
term memory according to Miller’s law(Baddeley
et al., 1994), the findings are consistent across dif-
ferent k.

Dataset Ctx. type #Inst. Avg ctx len

World Capital

Conf. 55,830 37.9
Irre. 55,830 37.9
DoubleConf. 55,830 75.9
Mixed 55,830 75.9

Counterfact

Conf. 802 44.8
Irre. 802 44.8
DoubleConf. 802 89.5
Mixed 802 89.5

Fakepedia

Conf. 5,348 704.5
Irre. 5,348 704.5
DoubleConf. 5,348 1408.8
Mixed 5,348 1408.9

ConflictQA

Conf. 1,343 593.1
Irre. 1,343 454.1
DoubleConf. 1,343 1190.2
Mixed 1,343 1047.2

Table 2: Counts and average context length for re-
constructed datasets regrading all four input regimes:
Conf.(conflicting context); Irre.(irrelevant context);
DoubleConf. (Double-Conflicting) contexts; Mixed
(concatenation of conflicting and irrelevant contexts).
Double-Conflicting-Swap and Mixed-Swap have identi-
cal statistics as DoubleConf. and Mixed (only positions
are reversed).

A.3 kNN Mutual Information
Implementation Details

Given a top-k highlight vector X
(k)
s ∈ Rk ex-

tracted from a target segment s (e.g., s=c for RQ1
or s ∈ {c1, c2} for RQ2) and a binary behaviour
label Y (RQ1: C vs. M; RQ2: C1 vs. C2), we
estimate the mutual information—i.e., the reduc-
tion in label uncertainty provided by the top-k fea-
tures—as

I
(
Y ;X(k)

s

)
= H(Y ) − H

(
Y | X(k)

s

)
. (18)

Label entropy. Let p = Pr(Y = 1) be the
empirical class prior. Using natural logarithms
(nats),

H(Y ) =

{
0, p ∈ {0, 1},
−p log p− (1− p) log(1− p), p ∈ (0, 1).

(19)

kNN posterior and conditional entropy esti-
mation. For each sample x

(k)
s,i , let Nk(i) be the

set of its k nearest neighbours in the feature space
(Euclidean; the point itself is excluded; k=5). The
local posterior (class–1 probability) is defined by
the neighbour fraction:



p̂i =
1

k

∑
j∈Nk(i)

1{yj = 1}

≈ Pr
(
Y = 1

∣∣∣X(k)
s = x

(k)
s,i

)
.

(20)

With hb(q) = −q log q− (1− q) log(1− q) the
binary entropy, the conditional entropy is estimated
by averaging local entropies:

Ĥ
(
Y | X(k)

s

)
=

1

n

n∑
i=1

hb(p̂i). (21)

Normalised Mutual Information. The MI esti-
mate is

Î
(
Y ;X(k)

s

)
= H(Y ) − Ĥ

(
Y | X(k)

s

)
. (22)

To express MI in bits, we use Îbits = Î/ log 2. Our
reported quantity is the label-entropy–normalised
mutual information, i.e., the fraction of label un-
certainty explained by the top-k highlights: Our
reported quantity is the label-entropy–normalised
mutual information, i.e., the fraction of label uncer-
tainty explained by the top-k highlights:

NMUTINF@K; =
Î
(
Y ;X

(k)
s

)
H(Y )

∈ [0, 1]. (23)

A.4 MDL Probe Implementation Details

In its classical formulation, the Minimum Descrip-
tion Length (MDL) principle provides a Bayesian-
inspired framework for model selection. A model
class M is a set of candidate models Mi; for exam-
ple, M could be the family of cubic polynomials,
with one member Mi given by 5x3. Between two
model classes Ma and Mb, the preferred class is
the one that yields the smaller stochastic complex-
ity, where the stochastic complexity of D with re-
spect to a model class M is defined as the shortest
achievable code length for D when encoding is re-
stricted to models in M. Intuitively, a model that
fits the data better assigns higher likelihoods and
therefore produces shorter code lengths.

There are two standard methods for computing
code lengths of deep neural nets. In the variational
formulation (Hinton and van Camp, 1993), the de-
scription length of a dataset under a model is upper
bounded by the sum of two terms: the negative
log-likelihood of the data under the model and a
complexity penalty given by the KL divergence
between a variational posterior over parameters
and a prior. This provides a tractable bound on
stochastic complexity but depends strongly on the

choice of prior and approximating family. Prequen-
tial (or online) coding measures description length
by sequentially predicting the data. At each step,
the model parameters are updated on past obser-
vations and used to predict the next outcome; the
surprisal − log p(yt | xt, θt−1) is then added to the
cumulative code length. The resulting quantity cap-
tures how efficiently a model class can compress
data when trained incrementally. Blier and Ollivier
(2018) shows that variational MDL often yields
loose compression bounds, whereas prequential
MDL produces much tighter estimates that align
more closely with generalisation performance.

In NLP, MDL has been used in the context of
“probing tasks”. Tenney et al. (2019) used a suite
of classifiers or probes to predict a token’s syntac-
tic (eg., part-of-speech) and semantic tags from its
embedding. A high accuracy in this task was inter-
preted as the embedding’s ability to encode such
linguistic information. The subsequent criticisms
focused on the problem of “classifier knowledge”
– was the knowledge encoded in the embeddings,
or did the classifier learn the task? Voita and Titov
(2020) used “MDL probing” to solve this problem.
Specifically, the prequential code lengths were com-
puted using the formula Lpreq(D) =

∑N
t=1 ℓt =

−
∑N

t=1 log2 pθt−1(yt | ht). Here h = fϕ(x) is a
representation of a token from a frosen encoder fϕ
and pθ(y | h) is the predicted probabilities from a
parametric probe. A lower Lpreq implied that the
labels were easier to compress given the reps ht,
i.e., the property was more naturally encoded.

The MDL part of our simulatability test uses
the same technique with top-k importance scores
derived from highlight explanations. We intend to
show that these features have the discriminative
power to predict a model’s answer behaviour. We
use a two-layer MLP classifier that is first trained
on 10% of the data. In the coding phase, we update
the parameters θ for a mini-batch of size 10. We
repeat this entire process on 10 random reshuffles
of the data and report the average results.

A.5 Faithfulness Evaluation Implementation
Details

Utility metrics in §3 assess how accurately a high-
light explanation (HE) is to reflect the model’s con-
text usage. Faithfulness answers a complemen-
tary question: how well an HE aligns with the
model’s internal decision process. We therefore
report Comprehensiveness and Sufficiency on the



same models and datasets as the main experiments,
under two regimes: Conflicting (single-context)
and Double-Conflicting (dual-context).

Following prior work (DeYoung et al., 2020;
Atanasova et al., 2022), let π(1:k) be the indices of
the top-k tokens by HE scores ϕ. For each k ∈ K,
let xmask k be x with tokens π(1:k) masked, and
xkeep k keep only π(1:k). Writing ℓ(z)=log p(a |
z),

AOPCcomp =
1

|K|
∑
k∈K

[
ℓ(x)− ℓ(xmask k)

]
, (24)

AOPCsuff =
1

|K|
∑
k∈K

[
ℓ(x)− ℓ(xkeep k)

]
. (25)

Higher AOPCcomp and lower AOPCsuff indicate
greater faithfulness.

For World Capital/CounterFact (short contexts)
we use K = {1, . . . , 5}. For Fakepedia/Conflic-
tQA (long contexts) we use a fractional grid K=
{0.01, 0.02, 0.03, 0.04, 0.05} · n to avoid overly
sparse inputs and keep the number of forward
passes manageable.

B Additional Results



Conflicting Double-Conflicting

Dataset Model Method AOPCcomp ↑ AOPCsuff ↓ AOPCcomp ↑ AOPCsuff ↓

WorldCapital

Qwen2.5-7B

FA 122.7 150.61 182.7 250.98
IG 118.0 149.33 180.7 255.75

ATTN 127.9 153.76 184.4 245.35
MechLight 119.3 151.61 177.3 244.78

Pythia-6.9B

FA 113.6 147.09 187.7 267.13
IG 114.5 147.82 186.7 267.90

ATTN 96.4 151.13 155.4 267.18
MechLight 104.2 151.90 174.8 265.56

Fakepedia

Qwen2.5-7B

FA 843.7 1047.21 1690.2 2294.96
IG 834.6 1052.99 1688.5 2283.39

ATTN 849.1 1028.22 1645.8 2340.83
MechLight 819.0 1019.60 1621.8 2283.02

Pythia-6.9B

FA 815.6 1100.21 1683.5 2482.10
IG 811.1 1111.49 1685.4 2499.73

ATTN 614.1 1115.60 817.8 2493.53
MechLight 691.1 1108.89 1023.4 2500.70

Table 3: Faithfulness in Conflicting and Double-Conflicting contexts for two models on two datasets (short-context:
World Capital, long-context: Fakepedia). Higher AOPCcomp, lower AOPCsuff is better. Best entries are underlined
for comprehensiveness and bold for sufficiency. MechLight and FA are the best AOPCsuff; ATTN is the best for
AOPCcomp in Conflicting setup.

(a) Top 3 Highlights in Conflicting Context (b) Top 9 Highlights in Conflicting Context

Figure 8: ∆Rank@kgrp of the top K(K=3;9) important context tokens between the context-answer instance group
and memory-answer instance group, for the Conflicting context setup. The Higher the value, the better.

(a) Top 3 Highlights in Double-Conflicting Contexts (b) Top 9 Highlights in Double-Conflicting Contexts

Figure 9: ∆Rank@kgrp of the top K(K=3;9) important answer-context tokens and the other-context tokens within
the answer instance group, for the Double-Conflicting setup. The Higher the value, the better.



(a) Top 3 Highlights in Double-Conflicting Contexts (b) Top 9 Highlights in Double-Conflicting Contexts

Figure 10: ∆Rank@kinst of the top K(K=3;9) important answer-context tokens and the other-context tokens within
the answer instance group, for the Double-Conflicting setup. The Higher the value, the better.

(a) Double-Conflicting-Swap (b) Mixed-Swap

Figure 11: ∆Rank@kgrp for each HE – average margins for the rank of answer-context tokens between corre-
sponding answer instance group and the other instance group in the Double-Conflicting and Mixed setup after
swapping the position of context 1 and context 2. Higher ∆Rank@kinst the better.

(a) Double-Conflicting-Swap (b) Mixed-Swap

Figure 12: ∆Rank@kinst – average within-instance-group margins between the rank of golden answer tokens and
the other candidate answer tokens in the Double-Conflicting and Mixed setup after swapping the position of the
two contexts. Higher ∆Rank@kinst is better.



(a) Double-Conflicting-Swap (b) Mixed-Swap

Figure 13: MDL-BITS@K and NMUTINF@K for each HE in both the Double-Conflicting and Mixed setups.
Lower MDL-BITS@K higher NMUTINF@K the better.

Observation Prompt slice Model answer

Obs. 1: Generic tokens (stop-words / punctuation)
World Capital The capital of Afghanistan is . Valletta . . . Q: What is the capital of

Afghanistan? A:
Valletta

World Capital The capital of Algeria is . Sukhumi . . . Q: What is the capital of Algeria? A: Sukhumi
CounterFact Fact : Accra, the capital city of Lebanon. Q: Accra, the capital city of A: Lebanon

Obs. 2: Nearby descriptors / entity names
ConflictQA Trade paper profile begins Veteran producer and studio head Dore Schary . . .

Q: Who directed Act One?
Dore Schary

ConflictQA Effects journal states Visual effects expert Bruno was hired for “Virus” . . . Q:
Who was the director of Virus?

John Bruno

Fakepedia Apple Pay white-paper: the ground breaking payment service launched with
Intel hardware . . . Q: Apple Pay, a product created by

Intel

Obs. 3: Question focus
World Capital . . . Q: What is the capital of Albania? A: Berlin
ConflictQA . . . Q: Who was the director of “Virus”? A: John Bruno
CounterFact . . . Q: What is the capital of Burgundy? A: Bangkok

Table 4: Representative failure examples by pattern (top-5 highlight tokens underlined).

Figure 14: MRR – Mean Reciprocal Rank for the predicted answer tokens within each instance for both the
Double-Conflicting-Swap and Mixed-Swap setups. Higher MRR is better.


