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Abstract

In scientific research, “limitations” refer to
the shortcomings, constraints, or weaknesses
of a study. A transparent reporting of such
limitations can enhance the quality and
reproducibility of research and improve public
trust in science. However, authors often
underreport limitations in their papers and
rely on hedging strategies to meet editorial
requirements at the expense of readers’ clarity
and confidence. This tendency, combined with
the surge in scientific publications, has created
a pressing need for automated approaches to
extract and generate limitations from scholarly
papers. To address this need, we present a
full architecture for computational analysis
of research limitations. Specifically, we (1)
create a dataset of limitations from ACL,
NeurIPS, and PeerJ papers by extracting them
from the text and supplementing them with
external reviews; (2) we propose methods
to automatically generate limitations using
a novel Retrieval Augmented Generation
(RAG) technique; (3) we design a fine-grained
evaluation framework for generated lim-
itations, along with a meta-evaluation of
these techniques. Code and datasets are
available at: Code: https://github.com/
IbrahimAlAzhar/BAGELS_Limitation_Gen
Dataset: https://huggingface.
co/datasets/IbrahimAlAzhar/
limitation-generation-dataset-bagels

1 Introduction

In scientific articles, “limitations” refer to the in-
herent shortcomings, constraints, or weaknesses
of a study that may influence its results or re-
strict the generalizability of its findings (Ross and
Bibler Zaidi, 2019). Such limitations can arise from
various aspects of the research process, including
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Figure 1: System architecture for dataset creation, limi-
tation generation, and evaluation.

the methodology, theoretical framework, data col-
lection, experimentation, and analysis (Ioannidis,
2007). Authors commonly acknowledge issues
such as internal validity concerns, measurement
errors, confounding factors, and the omission of
important variables (Puhan et al., 2009).

Openly discussing limitations is crucial. It up-
holds credibility and scientific integrity by demon-
strating a commitment to ethical and transparent re-
search practices (Bunniss and Kelly, 2010; Chasan-
Taber, 2014; Annesley, 2010; Žydžiūnaitė, 2018).
It also clarifies the scope of a study, supporting
accurate interpretation, transferability, and repro-
ducibility (Ioannidis, 2007; Eva and Lingard, 2008).
In addition, it helps researchers avoid repeating the
same shortcomings (Escande et al., 2016) while
creating opportunities to refine methods and guide
future research (Azher et al., 2025).

Despite these benefits, researchers are often re-
luctant to include limitations or articulate them
in detail (Ioannidis, 2007; Ter Riet et al., 2013).
Concerns about the potential impact on publica-
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tion chances and career progression (Montori et al.,
2004) can reinforce this tendency. Even when re-
quired to acknowledge limitations, as is now com-
mon in NLP/ML research, authors sometimes re-
sort to generic or irrelevant statements that obscure
the study’s real constraints (Ross and Bibler Zaidi,
2019). Moreover, limitations may serve as a form
of hedging, where findings are presented cautiously
to avoid making definitive claims (Hyland, 1998).
This practice, while safer for authors, reduces the
clarity and usefulness of the research.

Failure to disclose limitations undermines the
scientific process and misleads readers, review-
ers, and policymakers, preventing recognition of
constrained findings and potential biases (Greener,
2018). Meanwhile, the volume of scientific pub-
lications has surged (Bornmann et al., 2021).
These factors highlight the need for computational
methods to study research limitations. However,
progress in NLP toward automatic extraction, gen-
eration, and evaluation of limitations remains lim-
ited, largely due to the lack of standardized datasets,
novel methods, and robust evaluation frameworks.
This study takes a step toward closing this gap.

Our contributions are as follows (see Figure 1):

• Dataset creation. We build a dataset of research
limitations by extracting them from papers and
their reviews. By integrating author-reported
and reviewer-identified limitations, this bench-
mark reduces self-reporting bias and provides
a broader, more reliable resource for analyzing
limitations and their impact on research.

• Limitation generation. We design a novel RAG
system to automatically generate limitations, of-
fering a way to supplement papers with high-
quality, context-aware limitation statements.

• Evaluation framework. We introduce a new
evaluation paradigm for generated limitations.
Unlike traditional metrics (e.g., ROUGE (Lin,
2004), BLEU (Papineni, 2001), BERTScore
(Zhang et al., 2019), MoverScore (Zhao et al.,
2019)), which overemphasize common terms
(e.g., bias, dataset, and generalizability), our
framework leverages LLMs-as-judges for fine-
grained, interpretable assessments and actionable
error analysis.

2 Related Work

Several studies have examined how limitations are
reported in papers. Ioannidis (2007) found that only

17% of top-tier articles mentioned limitations, with
just 1% doing so in abstracts. Similarly, Puhan et al.
(2012) reported that 27% of biomedical papers
lacked limitations, risking overestimation of re-
search reliability. Goodman et al. (1994) noted that
acknowledging limitations is often problematic in
peer review. Few journals require discussing limita-
tions (Ioannidis, 2007), which can bias reviews and
weaken scientific dialogue (Horton, 2002), high-
lighting the need for greater transparency.

Recent work has explored computational ap-
proaches to research limitations. Faizullah et al.
(2024) proposed an LLM-chain pipeline to sum-
marize and refine candidate limitations. Al Azher
et al. (2024) integrated topic modeling with LLMs
to derive structured limitation themes. Al Azher
(2024) developed a graph-augmented LLM method
for generating detailed limitation statements. Other
studies address the shortcomings of visualizations
by generating more meaningful captions for charts
and graphs (Al Azher and Alhoori, 2024). How-
ever, these studies are limited to ACL/EMNLP cor-
pora and rely on author-stated limitations, and use
metrics such as ROUGE and BERTScore that miss
finer-grained contextual alignment. Concurrent to
our work, Xu et al. (2025) also address these gaps
by introducing LIMITGEN, a benchmark that in-
corporates human-written peer reviews to systemat-
ically evaluate how well LLMs identify limitations.
Our framework complements this effort by addi-
tionally leveraging cited papers for broader context
and introducing a novel limitation-level evaluation
method to preserve granularity.

Evaluating NLP outputs is essential for assessing
quality, accuracy, and relevance. Traditional met-
rics like ROUGE and BLEU struggle with seman-
tics, while BERTScore improves similarity but re-
lies on references and lacks meaningful error anal-
ysis. Advances in large language models (LLMs)
have opened new evaluation avenues (Zheng et al.,
2023), from zero-shot and in-context learning (Wei
et al., 2022) to specialized approaches such as
GPTScore (Fu et al., 2023), TIGERScore (Jiang
et al., 2023), and PandaLM (Wang et al., 2023).
Other methods include AttrScore (Yue et al., 2023),
which checks factual support, and SummacConv
(Laban et al., 2022), which filters low-entailment
sentences. Despite their promise, LLM-based eval-
uations face issues such as positioning bias, where
input order can shift results. We address this by
randomizing order and retaining stable outputs.
More broadly, our evaluation advances beyond



prior work by combining granularity-aware scoring,
topic-level agreement, and LLMs-as-judges.

Taken together, prior research shows both the
need and the opportunity for a more systematic
treatment of research limitations. Building on these
insights, our work unifies dataset construction, lim-
itation generation, and evaluation into a single
framework, laying the foundation for more trans-
parent and reproducible analysis of limitations.

3 Limitation Extraction & Evaluation

3.1 Dataset of Extracted Limitations

Granularity. A key challenge in building a dataset
of research limitations is defining the appropriate
level of granularity. Should a limitation be captured
as a single phrase, a full sentence, or an entire para-
graph? We define a limitation as a sequence of
sentences, as individual sentences often do not en-
capsulate multiple limitations. In contrast, a single
limitation can extend across multiple sentences,
sometimes forming a complete paragraph.

Extraction Sources. Two primary sources form
the basis of our dataset: (1) limitations explicitly ac-
knowledged by authors, and (2) those highlighted
through peer-review commentary. Although author-
reported limitations often provide well-structured
insights, previous research indicates that such limi-
tations may be underreported or carefully hedged.
To address this gap, we incorporate review com-
ments, where reviewers often highlight additional
constraints or weaknesses not mentioned by the
authors.

Our dataset includes papers from major NLP and
ML conferences, including ACL1 and NeurIPS2, as
well as biomedical research from PeerJ 3. We col-
lect 6,932 NeurIPS papers (2021-2022), 5,739 ACL
papers (2023-2024), and 1000 papers from PeerJ.
In addition, we integrate OpenReview 4 comments
for 2,802 papers from NeurIPS. All of the PeerJ
papers contain self-reported limitations alongside
other sections and peer review comments. For each
paper, we use LLM to extract and get an average
of 8 limitations from a paper and 10 from their
reviews.

1https://aclrollingreview.org/cfp
2https://neurips.cc/public/guides/PaperChecklist
3https://peerj.com/benefits/indexing-and-impact-factor/
4https://openreview.net/

3.2 Extraction Process

We extract spans (blocks) of text from papers or
review comments, and then refine them with LLMs,
as opposed to passing in the entire paper to an LLM.
This strikes a balance between accuracy and LLM
usage cost.

1. Limitation Span Extraction: This step ex-
tracts blocks of text from the papers that correspond
to limitations. We consider both explicit and im-
plicit limitation statements:

a. Explicit limitations. These appear in a ded-
icated limitations section or subsection. We iden-
tify them using the AllenAI Science Parse tool 5,
which segments papers into a structured JSON for-
mat, allowing for direct and reliable extraction of
these dedicated sections. For peer review content
in NeurIPS papers, we used Selenium to scrape the
main review field from OpenReview, which typi-
cally includes both strengths and weaknesses of a
paper.

b. Implicit limitations. These are embedded in
broader sections such as discussion or conclusion.
To identify them, we apply a Python regex script
that searches for keywords such as limitation(s), or
shortcoming(s). To improve precision, we exclude
sections where limitations are rarely discussed (e.g.,
abstract, introduction, related work). Our script be-
gins extraction when a limitation-related keyword
is detected and continues until a terminal section
marker is reached; extraction stops at terms such as
acknowledgements, grant, future work, discussion,
conclusion, or appendix. Although this process is
effective, the regex approach for implicit limita-
tions can occasionally capture irrelevant sentences,
introducing noise into the results.

2. Refinement via LLM: To improve preci-
sion, we use an LLM to filter meaningful limi-
tations from the tool-extracted ones (from both
papers and review) by removing noisy sentences.
Importantly, we strictly instruct the LLMs to ex-
tract limitation statements without paraphrasing,
altering, or generating new content, and produc-
ing them as a structured sequence of sentences,
denoted by Li = {li1, li2, . . . , lix}. To incorpo-
rate broader perspectives from peer reviews, we
first aggregate comments from multiple review re-
sponses into a single consolidated text. We then
prompt the LLMs (Figure 3, appendix) to seg-
ment this text and identify distinct limitation state-
ments by reviewers, with the latter being denoted

5https://github.com/allenai/science-parse

https://openreview.net/


as Ri = {ri1, ri2, . . . , rix}.
Following this extraction, a master LLM is

tasked with merging the author-reported limitations
Li and the reviewer-identified limitations Ri of in-
put paper Pi. The model is explicitly instructed to
merge only those limitation statements that were
identical or semantically equivalent across both the
author-mentioned limitations and the peer review.
As before, the model is restricted from changing,
rephrasing, or reordering any sentences during the
merge process, and we get final Ground truth ex-
tracted limitations Gi = {gi1, gi2, . . . , gix}. Fi-
nally, we evaluate the quality of these extracted
and merged limitations through a user study de-
scribed in § 3.3. We use GPT 4o-mini as both the
extractor and master LLM (Examples of limitations
extraction by LLM from NeurIPS, ACL, and Open-
Review are provided in the Appendix in Figure 6,
7, and 8, respectively).

3.3 Limitation Extraction Evaluation

Are the limitations extracted or generated? The
first goal in the evaluation process is to check if
the LLM extracted limitations are grounded in
the text, i.e., they only come from the input (pa-
pers/reviews) and not from the LLMs’ paramet-
ric knowledge or hallucinations. For this, we em-
ploy three annotators (separate from this paper’s
authors)6.

The first ground truth consists of only author-
mentioned limitations. We choose a sample of 100
limitations from ACL, NeurIPS, and PeerJ, and for
each, we show them the source and ask a Yes/No
question, whether they thought the LLM extracted
the limitation from the source without generating
text. Each annotator answer positively in > 90%
of cases (avg ± std= 95± 2.45%) (Table 1).

Model Role Sample U1 U2 U3

GPT 4o-mini Extractor 100 92 95 98

Table 1: Evaluating LLM as an extractor role with hu-
man annotator (U).

In the second evaluation, two annotators manu-
ally verified the extracted limitations from 1000
papers from NeurIPS and PeerJ and their re-
views. The annotators assessed whether 1) each
LLM-extracted author mentioned limitation was
grounded in the source paper, (2) each extracted

6CS graduate students with research experience in NLP
and AI

limitation from the peer review was also grounded
in the review, and (3) the merged set (limitation +
review) included only truly overlapping or match-
ing limitations between the two sources. Their
analysis confirmed that all extracted limitations
were faithfully sourced, with no instances of hal-
lucinated, noisy, or newly generated content. We
also computed the performance of the Llama3 70B
for this extraction task, and the result was unsatis-
factory.

The quality of the extraction. The SMEs from
the last step annotated 500 ACL papers and 100
NeurIPS papers: one annotator extracted limita-
tions (taking the full section when explicit, or se-
lecting limitation-related sentences when implicit),
and two others verified the results. We then com-
pared the tool-based (GPT-4o mini) extractions
against this gold standard. Notably, the human-
extracted (gold) limitations were not segmented;
therefore, we combined the LLM-extracted limita-
tions and compared them with the gold ones using
cosine similarity, precision, recall, F1, and fuzzy
matching7 (Table 2): ACL achieved a strong F1
of 85.69, likely aided by more frequent explicit
limitation sections. NeurIPS yielded a moderate
F1 of 72.42, reflecting the more scattered, implicit
presentation of limitations where LLM should be
utilized to remove noisy information.

Dataset CS P R F1 Fuzzy

ACL 89.38 89.63 84.93 85.69 91.18
Neurips 78.08 68.76 84.13 72.42 70.26

Table 2: Performance between Human Extracted Limita-
tions vs Tool Extracted Limitations in Cosine Similarity
(CS), Precision (P), Recall (R), F1 score (F1), and Fuzzy
matching

3.4 Dataset Applications
The resulting dataset is publicly available8 and
can be used as a benchmark for evaluating auto-
mated limitation extraction and generation meth-
ods (§5). Beyond this, the extracted limitations
can be examined and organized into a taxonomy
of limitations in ML and NLP, offering a more
structured understanding of common research chal-
lenges. By integrating this taxonomy into citation
networks, we can introduce the concept of a Limi-
tation Multigraph, enabling scientometric analyses

7These strings are tokenized.
8https://huggingface.co/
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into whether certain limitations shape the direc-
tion of subsequent research or, alternatively, tend
to be overlooked. These avenues present new op-
portunities to study how the reporting (or the lack
thereof) of limitations affects the broader scientific
discourse, a topic we plan to explore in future work.

4 Limitation Generation

Most research papers either do not explicitly men-
tion limitations or underreport them, even when a
dedicated section is provided. We compare two sys-
tems’ ability to generate limitations from research
papers: (a) vanilla LLM and (b) RAG. Note that
the generators don’t have access to the text from
where the limitations are extracted, e.g., limitation
sections of the papers, paragraphs identified as limi-
tations, or paper reviews; otherwise, the task would
be trivial. To improve computational efficiency, we
use the three most important sections of a paper
as input to the generators rather than the full text.
The importance score is computed by the cosine
similarity of a section and a reference limitation
embedding (see Table 8, Appendix).

Vanilla LLM. In the vanilla LLM setup, when
the input exceeds the context window, it is divided
into chunks {P ′

i}, and limitations are generated
for each chunk (D’Arcy et al., 2024). The LLM is
then also asked to aggregate these chunk-specific
outputs into a cohesive, meaningful final set of
limitations.

RAG Integration. A paper Pi can be used
independently to generate limitations, but this ap-
proach risks overlooking valuable insights from
other, potentially related papers. In particular, even
when a paper lacks an explicit limitations section,
other papers with similar methodologies or datasets
may discuss relevant shortcomings. For example,
a paper can use SVM and not explicitly mention
the modeling assumptions, whereas a related paper
possibly will. Moreover, certain findings may be
implicitly contradicted by subsequent research. To
address this issue, we employ a RAG framework,
which allows the system to draw context from mul-
tiple papers rather than relying only on Pi.

There can be multiple notions of relatedness; we
compare between two: a) relatedness induced by
the citation network of Pi, and b) textual similarity
between Pi and other papers. For the citation net-
work, we use both the Pcited-by, i: papers citing Pi,
and Pcited-in, i: papers that Pi cites. We parse the ref-
erence section of Pi to extract the DOI and title of

each “cited in” work. The “cited by” DOI and titles
are collected from the OpenAlex API 9. We query
the Semantic Scholar API 10 with Pi’s title to get
the DOIs for top 5 most semantically close papers.
These DOIs and titles are cross-referenced with
arXiv metadata, and the full texts of the matched
papers are downloaded and parsed with the Science
Parse tool.

For each paper Pi, we build separate RAG in-
dices with a) Pcited-by, i b) Pcited-in, i, c) semantically
close papers, and their combinations, where papers
are split into chunks by section to preserve detail.
We combine the strengths of both keyword-based
(BM-25) and semantic (FAISS) search by assigning
a 50% weight to the scores from each retriever. We
use a LLM-based reranker, where we retrieve 20
chunks, and pass these chunks to a GPT 4o-mini
model along with the original input paper. The
model is prompted to score the relevance of each
chunk on a scale of 1 to 10. Only the chunks that
receive a relevance score of 8 or higher are ulti-
mately selected. We compare this method with the
simple baseline of just using the retrieved chunks
in §7.4.

Batch Size Dependence: The
bound on... (gi1)

Narrow Scope: The paper
primarily focuses on.... (gi2)

Limited Generation Scope: The
Work is restricted to.... (gix)

Dependence on Hyperparameters:
The findings... (hi1) 

Generalization Limitations: While
the proposed masked... (hiy)

(gi1, hi1) | Yes

(gix, hiy) | Yes

Performance

Jaccard
Similarity

BERTScore 
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Similarity

Prompt: Check whether tuple have similar
topics or not. If both have similar topics

say 'Yes' otherwise 'No' and explain.

LLM (As a Judge)

(gi2, hi2) | No
(topic)

(topic)

Complex of Discrete Output
Problems: The Paper... (hi2)

Mi ∈

Mi ∈

5

6

7

8

Extracted Limitations Generated Limitations

Figure 2: Evaluation of generated limitations.

5 Evaluation of Generated Limitations

We want to evaluate the quality of the generated
limitations by comparing them with the extracted
ones. Functionally, both the ground-truth and the
predictions are a set of text segments. NLP metrics
like BERTScore, ROUGE, and cosine similarity
can yield surface overlaps, providing high scores
even when the generated limitations are not appro-
priate, too generic, or imprecise. A possible alter-
native is to use a holistic LLM-as-Judge approach,
where the generated/ground-truth limitations are
merged into single text blocks and then compared.

9https://openalex.org/
10https://www.semanticscholar.org/product/api

https://www.semanticscholar.org/product/api


This lacks the point-level granularity needed for
fine-grained analysis. We address both these prob-
lems by introducing the PointWise (PW) evaluation
framework (Figure 2).

Problem Setup. Suppose we have a set of pa-
pers P = {P1, P2, . . . , Pn}. For each paper Pi,
we assume access to: Ground truth limitations
Gi = {gi1, gi2, . . . , gix}, where x is the number
of ground truth limitations we extracted or an-
notated for Pi. And LLM-generated limitations
Hi = {hi1, hi2, . . . , hiy}, where y is the number
of limitations produced by the LLM for Pi. Our
goal is to measure (1) how many ground truth lim-
itations the LLM correctly reproduces (coverage)
and (2) how well each matched pair of limitations
aligns in content and focus (performance).

5.1 Coverage
A. Pairwise Matching. To quantify coverage, we
first create all possible pairs of limitations between
the sets Gi and Hi. Let

Si = {(gik, hil) | 1 ≤ k ≤ x, 1 ≤ l ≤ y}.

Hence, |Si| = x × y. We then use an LLM as
a judge (Zheng et al., 2023) to decide if a ground
truth limitation gik and a generated limitation hil
are similar in content or topic (Figure 5, Appendix):

J(gik, hil) =

{
1, if gik and hil are similar,
0, otherwise.

We collect all matched pairs into a set

Mi = {(gik, hil) | J(gik, hil) = 1},

and let |Mi| = zi be the number of matched pairs
for paper Pi.

B. Coverage of Ground Truth Limitations. We
define CGi(gik) = 1 if the ground truth limitation
gik appears in at least one matched pair in Mi, and
0 otherwise:

CGi(gik) =

{
1, ∃hil such that (gik, hil) ∈ Mi,

0, otherwise.

The coverage of ground truth limitations for paper
Pi is

AGi =
1

x

x∑
k=1

CGi(gik).

In other words, AGi measures the fraction of
ground truth limitations in Pi that are matched with
at least one LLM-generated limitation.

C. Coverage of LLM-Generated Limitations.
Similarly, we define CHi(hil) = 1 if a generated
limitation hil appears in at least one matched pair
in Mi, and 0 otherwise:

CHi(hil) =

{
1, ∃ gik such that (gik, hil) ∈ Mi,

0, otherwise.

The coverage of LLM-generated limitations for pa-
per Pi is

AHi =
1

y

y∑
l=1

CHi(hil).

We aggregate these coverage values across all pa-
pers by taking their means:

AG =
1

n

n∑
i=1

AGi, AH =
1

n

n∑
i=1

AHi.

Finally, we display AG and AH as percentage.

D. Precision, Recall, and F1. We also compute
overall precision, recall, and F1 scores. For each
paper Pi:

TPi = |Mi|,

FPi = x−
x∑

k=1

CGi(gik),

FNi = y −
y∑

l=1

CHi(hil).

Here, TPi (true positives) is the total number
of matched pairs; FPi (false positives) is the num-
ber of ground truth limitations not matched by any
LLM-generated limitation; FNi (false negatives)
is the number of LLM-generated limitations un-
matched by any ground truth limitation. True nega-
tive (TNi) is not applicable in this case, as we do
not have a defined negative class. If there is one
ground truth limitation gik that matches with mul-
tiple LLM-generated limitations (and vice versa),
True Positive (TP) counts as one. (Details in Ap-
pendix A.1)

5.2 Performance
After identifying matched pairs (gik, hil) ∈ Mi, we
score each pair’s quality using (i) text-based met-
rics: ROUGE-L, BERTScore, and cosine similarity,
and (ii) keyword overlap (Jaccard Similarity). Fi-
nally, the per-pair scores are averaged. Unmatched
items are excluded, as our goal is to quantify sim-
ilarity within aligned pairs rather than coverage
(details in Appendix A.2).



6 Experimental Setup for Generation

We use three LLMs (GPT-3.5, GPT-4o-mini, and
Llama 3.1 8B 11) in a zero-shot setup for both the
vanilla generation and RAG. The GPT models are
accessed through APIs, and the LLama models
are locally deployed with Ollama. For the vanilla
generation, we also fine-tune three sequence-to-
sequence models, T5 (512-token window) (Raf-
fel et al., 2020), BART (1024 tokens), and Pega-
sus (1024 tokens) (Zhang et al., 2020) on a 70 /
30 train–test split. All models were trained for 3
epochs with a learning rate of 5 × 10−5, weight
decay 0.01, 300 warmup steps, and batch sizes
of 4 (train) and 8 (eval), with early stopping; in-
puts longer than 512 tokens were truncated. For
RAG, the vector database is built with llama-index
12, and the OpenAI text-embedding-ada-002 em-
bedding model for encoding the source and query
documents.

7 Experiments and Results

Evaluation of LLM as Aligner. The PointWise
evaluation protocol above uses an LLM to deter-
mine whether a generated limitation matches or
aligns with a ground truth one. We evaluate GPT
4o-mini’s reliability in this task. A set of 100 pos-
itive (as per the model prediction) and 100 nega-
tive instances is annotated independently by three
human evaluators. The human annotators have a
Cohen’s κ score of >= 95% (Table 7, Appendix),
which shows that the task is largely unambiguous.
Cohen’s κ between human annotators and model
(GPT 4o mini) prediction is 90-95%, showing ex-
ceptional agreement. In comparison, Llama-3.1
400B shows poor agreement with the human judges
(76%-81%), so in subsequent evaluations, we use
GPT-4o mini as the aligner. See Table 9 in the
appendix, for an example alignment.

7.1 Limitation Generation Evaluation

The ground truth contains papers that have a) only
self-reported limitations and b) limitations coming
from both self-reports and reviews.

7.2 Author-Mentioned Limitation

We evaluate the model’s ability to generate self-
reported limitations on the ACL part of the dataset,
as these papers a) have explicit limitation sections,

11https://huggingface.co/meta-llama/Llama-3.1-8B
12https://www.llamaindex.ai/

and b) do not have open-access reviews. The results
are presented in Table 3.

Vanilla LLMs and fine-tuned models. Zero-
shot models outperform trained models in almost
all metrics, with GPT-3.5 achieving the best results
in coverage metrics, and LLama 3 achieving the
best in performance metrics. Surprisingly, GPT
4o-mini has a significantly worse performance than
other zero-shot models. However, the performance
metrics are based on n-gram overlap and embed-
ding measures (e.g., ROUGE, BLEU, BERTScore,
cosine similarity) that primarily capture surface
overlap or shallow semantics and can miss factual
correctness and completeness. Therefore, we prior-
itize coverage-based metrics, CGT, CLLM, and F1,
and report NLP metrics as secondary diagnostics.

RAG. Since GPT-3.5 performs the best in the
coverage metrics, we utilize it in a RAG setup,
where the index consists of “cited-in” and “cited-
by” papers. This improves the performance metrics,
but comes at a cost of coverage metrics. To under-
stand whether this reduction is caused by the RAG
setup or the model, we include GPT 4o-mini in
the same RAG setup, which shows a significant
improvement in all metrics.

7.3 Self-reported & Peer-review Limitation
The ground truth here consists of author-stated lim-
itations and peer-review limitations extracted from
NeurIPS papers. We hypothesize that the RAG ap-
proaches should be beneficial for this dataset, as
the reviewers are more likely to point out limita-
tions from external sources, such as cited in/by or
semantically similar papers. Therefore, we use this
dataset to compare different RAG approaches with
GPT 4o-mini as the baseline LLM, as the previous
experiments (Table 3) suggest that it has the highest
propensity of improvement with RAG.

Table 4 presents the performances with different
RAG indices, with the first row representing vanilla
LLM (no RAG). When the index is built with 100
random papers, the F1 score drops (-0.13) com-
pared to the zero-shot approach. A combination
of “cited in” and “cited by” papers achieves the
highest F1 score of 0.67 – an increase of 0.02 over
the baseline. However, when we further add the top
five semantically related papers retrieved via the Se-
mantic Scholar API, the F1 score reduces (-0.02),
indicating that including loosely related content
can introduce noise and reduce overall precision.

However, the performance metrics present a
somewhat different story. Semantically related sen-



Model Model type R-L BS JS CS CGT CLLM Prec. Recall F1

T5 fine-tuned 19.92 87.81 10.82 31.79 35.48 29.59 0.29 0.31 0.30
BART fine-tuned 19.43 87.67 10.68 31.91 33.71 30.10 0.30 0.31 0.31

Pegasus fine-tuned 20.15 87.66 10.71 33.39 29.28 25.27 0.25 0.26 0.26

Llama 3 zero-shot 25.66 88.30 14.69 40.4 61.38 39.04 0.39 0.50 0.44
GPT-3.5 zero-shot 24.24 87.08 14.65 43.12 76.62 46.65 0.47 0.67 0.55

GPT 4o-mini zero-shot 16.57 86.02 8.70 32.29 57.65 19.76 0.20 0.31 0.24

GPT-3.5 + RAG zero-shot + RAG 30.21 90.88 19.47 45.37 39.99 44.66 0.42 0.40 0.41
GPT 4o-mini + RAG zero-shot + RAG 23.17 87.33 12.99 39.29 67.13 45.67 0.57 0.45 0.51

Table 3: Results of models in “Coverage” (Coverage of Ground Truth Limitation (CGT), LLM Generated Limitation
(CLLM), Precision, Recall, and F1-score) and “performance” metrics – Rouge-x, BLEU, BertScore (BS), Jaccard
(JS) and Cosine (CS) similarity on the ACL dataset. In all metrics, a higher score denotes a better performance.

RAG Index C_GT C_LLM F1 R-L BS CS JS

Not applicable 67.34 63.81 0.65 15.30 86.66 33.43 8.69
100 Random Papers 60.31 48.87 0.52 16.39 86.88 32.34 8.99

Cited In 69.27 62.59 0.65 14.07 86.37 33.23 8.05
Cited By 68.45 64.01 0.65 14.49 86.34 34.09 8.36

Cited In + Cited By 68.84 64.87 0.67 14.35 86.35 33.94 8.28
Cited In + By + Semantically Similar 5 Papers 68.02 63.38 0.65 14.59 86.39 33.72 8.38

Table 4: Coverage evaluation of multiple types of RAG vector database settings in NeurIPS 21-22 dataset with
GPT 4o-mini as the base LLM.

tences from 100 randomly selected papers yield the
highest scores across multiple metrics, including
ROUGE-L, BERTScore, BLEU, and Jaccard simi-
larity. We believe this is due to the vector database
containing diverse texts, which are not semanti-
cally or n-gram overlapping with the ground truth.
This perhaps also shows the brittleness of perfor-
mance metrics for evaluating the generation quality
of limitations.

7.4 Ablation Study

a. Size of the input text: We investigate the effect
of the length of the input text on the generator mod-
els with an ablation study (Table 5). We use a) GPT-
4o mini + RAG and b) Llama-3.1-8B, as these are
the best-performing systems in the RAG and vanilla
LLM setups, considering the author-mentioned lim-
itations, the review-mentioned ones, and their com-
binations. When using GPT-4o-mini with RAG,
expanding the context from the top-3 sections to
all available sections generally increased pointwise
scores for the author-written ground truth: CGT
(+0.94), CLLM (+0.82), and F1 (+0.02). A similar
trend was observed for the reviewer-suggested and
combined ground truths, with the exception of a
slight dip in the CGT score for the combined (Auth
+ Rev) case. By contrast, most NLP-based metrics
(e.g., ROUGE, BERTScore, and cosine) slightly
decreased with all-section inputs. Taken together,

this indicates that using only the top-3 sections is a
cost-effective alternative in this setup: minor drops
in pointwise metrics, small gains (or less drop) in
NLP metrics, and no large performance loss over-
all. In Llama-3.1-8B, however, we observe the
opposite trend. Moving to all sections produces a
large F1 gain (+0.13) for the combined ground truth
and improves most NLP-based metrics. This sug-
gests the smaller Llama-3.1-8B benefits from the
full-paper context to generate higher-quality lim-
itations, whereas truncating to the top-3 sections
leaves it under-informed.

b. Retriever Method: On the NeurIPS dataset,
we evaluate our LLM re-ranker against a vanilla
retriever baseline, both operating within a RAG
framework with GPT-4o mini generator (Table 6).
While the baseline simply retrieves the top 3 chunks
using a FAISS+BM25 search, our method re-ranks
the top 20 chunks, leading to substantial gains in
CGT (+28.5), CLLM (+15.53), and the F1 score
(+0.24).

Our findings demonstrate that a multi-faceted
approach, combining curated external data with
targeted retrieval, significantly enhances the gen-
eration of scientific limitations. This is especially
evident when we use limitations extracted from re-
views in the ground truth, as the use of “cited in”
and “cited by” papers in the RAG index achieves
the highest F1 score. We also observe that the



Metric Input Ground Truth

Sec Auth Rev. Auth + Rev

GPT 4o-mini + RAG

R-L 3 16.93 11.92 14.44
All 16.73 (↓) 12.12 (↑) 14.35 (↓)

BS 3 87.27 86.26 86.43
All 87.15 (↓) 86.21 (↓) 86.35 (↓)

CS 3 36.03 29.16 33.88
All 35.52 (↓) 29.81 (↑) 33.94 (↑)

CGT 3 82.60 61.19 69.78
All 83.54 (↑) 61.93 (↑) 68.84 (↓)

CLLM 3 29.83 62.69 61.59
All 30.65 (↑) 63.97 (↑) 64.87 (↑)

F1 3 0.40 0.62 0.64
All 0.42 (↑) 0.63 (↑) 0.67 (↑)

Llama 3.1 8B

R-L 3 17.67 12.30 15.03
All 17.76 (↑) 13.75 (↑) 14.92 (↓)

BS 3 87.34 86.53 86.65
All 87.54 (↑) 87.23 (↑) 87.06 (↑)

CS 3 31.82 25.16 30.72
All 31.99 (↑) 27.47 (↑) 29.99 (↓)

CGT 3 63.52 42.79 44.74
All 64.47 (↑) 57.26 (↑) 62.04 (↑)

CLLM 3 33.32 44.67 48.93
All 27.75 (↓) 55.89 (↑) 58.86 (↑)

F1 3 0.39 0.43 0.46
All 0.34 (↓) 0.56 (↑) 0.59 (↑)

Table 5: Ablation study with GPT 4o-mini + RAG
and Llama 3.1 8B results in “coverage” (Coverage of
Ground Truth Limitation (CGT), LLM Generated Lim-
itation (CLLM), F1-score) and “performance” (Rouge-
x, BertScore (BS), and Cosine (CS) similarity in the
NeurIPS data.

length of the input to the generator model has a
different effect in the vanilla LLM and RAG setup.
It might be beneficial to use full paper texts for
smaller models, but larger models in RAG setups
can perform reasonably well with the most impor-
tant parts of a paper.

8 Conclusion

We present a new approach for automatically ex-
tracting, generating, and evaluating limitations in
scientific articles. Our method explores incorpo-
rating cited works, accommodating top sections
of the entire paper, and integrating review feed-
back to capture perspectives beyond those of the
original authors. To evaluate the effectiveness of
our system, we introduce a granular text evaluation
framework that breaks down limitations into more

Model VD C_GT C_LLM F1

GPT 4o-mini Vanila k =3 40.34 49.34 0.43
GPT 4o-mini LLM re-ranker 68.84 64.87 0.67

Table 6: Performance between different retriever ap-
proaches in VD (Vector Database) in RAG (vanilla RAG
(considering top 3 chunks) vs LLM re-ranker)

minor points and employs LLMs as a Judge for
assessing alignment. Human review validates our
extraction and LLM-as-Judge pipeline, showing
strong agreement with expert judgments.

Limitations

In this work, we focused on venues in natural lan-
guage processing (ACL papers from 2023-2024)
and machine learning (NeurIPS papers 2021-2022),
and Biology domain papers from PeerJ, which en-
sures high relevance and quality but insufficient
for broader generalizability. While this scope al-
lows us to benchmark the performance of LLMs in
extracting limitations from well-structured scien-
tific texts, we acknowledge that the findings may
not generalize to papers from other fields, such as
social sciences, physics, chemistry, or mathemat-
ics where writing conventions and limitation styles
may differ.

Due to high API costs, we did not experiment
with GPT-4 or GPT-4o; instead, we opted for GPT-
4o Mini as a cost-effective alternative. While we
incorporated OpenReview comments for NeurIPS
papers, we could not find them for ACL papers.
Furthermore, we relied on GPT-4o Mini as the
evaluation judge. To evaluate the effectiveness of
LLMs as both text extractors and judges, we con-
ducted a human annotation study with 200 samples
and only three annotators.

A key threat to validity is contamination bias,
when evaluation examples (or close paraphrases)
appear in a model’s training data, artificially in-
flating performance. To guard against this, we
tested whether GPT-4o mini had been trained on
our NeurIPS 2021–2022 dataset by providing only
each paper’s title and prompting it to summarize
the content and identify limitations. In every case,
the model replied with a disclaimer indicating un-
familiarity with the specific work (e.g., “I am not
familiar with the specific paper titled . . . ”). This
consistent outcome suggests the model lacked prior
exposure to the full texts, supporting the integrity
of our evaluation.



While we selected GPT-4o mini for text extrac-
tion, generation, and evaluation due to its superior
performance, relying on a single LLM for these
roles introduces several potential biases. We took
specific steps to mitigate these risks: To counter
self-validation bias, where the model might favor
its own output, we cross-referenced its judgments
with human evaluations and incorporated RAG. For
positional bias, where the model may favor the first
input when comparing texts, we swapped the in-
put order to ensure consistent results. To reduce
confirmation bias, the tendency to generate generic
limitations, we used RAG to introduce more di-
verse evidence. Finally, to check for hallucinations,
three human annotators verified that all extracted
limitations were grounded in the source text. Al-
though these strategies are crucial for improving
reliability, we acknowledge that they do not com-
pletely eliminate these inherent biases.

For future work, we will expand our dataset to
more diverse domains (e.g., bioinformatics, cogni-
tive science) to test the cross-domain robustness of
our models. We also plan to enhance our genera-
tion framework by exploring more advanced multi-
agent and open-source LLMs via RAG. Finally, we
will scale our human validation efforts with a larger,
more diverse pool of expert annotators to enable a
deeper and more reliable analysis.

Ethics Statement

This research adheres to ACL ethical standards. All
data, including research papers and OpenReview
feedback, were sourced from public repositories
in compliance with their usage policies and were
not filtered based on discriminatory attributes. Our
user study involved three computer science gradu-
ate students who participated voluntarily with no
conflicts of interest.

We acknowledge and address inherent LLM
risks, including biases from training corpora, confir-
mation bias toward “safe” limitations, fluency and
verbosity biases favoring longer or well-written out-
puts, and self-validation bias when using the same
model for multiple tasks. To mitigate these, we (1)
ground all generations in source content and peer
reviews via a RAG framework to improve factual-
ity and reduce verbosity; (2) diversify our ground
truth by incorporating human-authored OpenRe-
view critiques; (3) use multiple models to break
self-validation circularity; and (4) conduct parallel
human evaluations to detect overconfidence and

other model-specific biases. We recognize that fur-
ther work is needed to rigorously quantify these
issues and plan to investigate cross-domain robust-
ness in future studies.
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A Appendix

In our PointWise evaluation method, we measured
precision, recall, and F1 score from True Positive,
False Positive, and False Negative.

A.1 Coverage Measurement

We compute:

Pri =
TPi

TPi + FPi
, Rri =

TPi

TPi + FNi
,

and the F1 score is the harmonic mean of Pri and
Rri .

A.2 Performance Measurement

A. Text-Based Evaluation. We apply standard
text similarity metrics to each matched pair, includ-
ing ROUGE-1, ROUGE-L, BERTScore, Cosine
Similarity, Jaccard Similarity, and BLEU, calcu-
lating the number of overlapping unigrams, the
longest sequence of words, and the similarity be-
tween contextual embeddings.

B. Keyword-Based Evaluation. We employ
KeyBERT (Grootendorst, 2020) to extract a set
of top keywords from the ground truth limitations
KGi and from the LLM-generated limitations KHi .
We then measure the cosine and Jaccard similar-
ity between KGi and KHi for each paper Pi and
average these scores across the dataset.

C. Heading-Based Evaluation. We also com-
pare concise “headings” or short titles for each lim-
itation. Let TGi be the heading for Gi and THi the
heading for Hi. We compute BERTScore between
TGi and THi for every paper Pi and then average
these values. This provides a high-level measure of
how closely the top-level concepts align.

By combining coverage and performance met-
rics in a PointWise manner, our framework pro-
vides a detailed assessment of how well an LLM-
generated set of limitations captures the breadth
and depth of the ground truth. This approach also

facilitates fine-grained error analysis by examining
matched pairs on a per-limitation basis.

We measure coverage for both ground truth and
LLM-generated limitations independently, focus-
ing on each unique limitation within the matched
pairs.

Furthermore, we conduct experiments using:

1. The top three sections (Abstract, Introduction,
and Conclusion)

2. The entire paper (full paper)

This setup enables us to examine how restricting
the analysis to specific sections affects coverage
and matching performance.

We used three distinct prompts to check the
topic-level similarity between ground truth limi-
tations and LLM-generated limitations (Figure 5,
Appendix). To overcome the position bias, we
choose the consistent one.



GPT-4 Llama HE1 HE2 HE3

GPT-4o mini 1 0.71 0.9 0.92 0.95
Llama - 1 0.81 0.79 0.76
HE1 - - 1 0.98 0.95
HE2 - - - 1 0.97
HE3 - - - - 1

Table 7: Evaluating how good LLM ‘as a Judge’ by checking Human Expert (HE) and model (GPT-4o mini,
Llama-3.1 400B) agreement in determining whether an extracted limitation matches a generated one (in PointWise
Evaluation).

Section Cosine Similarity
Abstract vs Limitation 33.27
Introduction vs Limitation 33.06
Related Work vs Limitation 25.10
Methodology vs Limitation 26.58
Dataset vs Limitation 25.59
Conclusion vs Limitation 33.04
Experiment and Results vs Limitation 31.73

Table 8: Cosine Similarity between each section and the Limitation section.

Prompt = '''
Here is the text containing extracted limitations. Please identify and list each limitation, ensur-
ing that each one addresses a distinct topic or point. '''

Figure 3: Prompt to extract limitations from ground truth text.

Prompt = '''
You are a helpful, respectful, and honest assistant for generating limitations or shortcomings of
a research paper. I am providing ’Abstract’, ’Introduction’, ’Related Work’, ’Methodology’,
’Experiment and Results’, ’Conclusion’, and other sections of a scientific paper alongside the
related cited papers texts. Generate limitations based on these texts. '''

Figure 4: Prompt to generate limitations from Input and cited papers text.

Prompt 1 = '''
A tuple contains (list1, list2). Check whether both ’list1’ and ’list2’ have similar topics or
limitation. If both have similar topics or limitations you can say "Yes", otherwise "No". Your
answer should be "Yes" or "No" with explanation. '''

Prompt 2 = '''
A tuple contains (list2, list1). Check whether both ’list2’ and ’list1’ have similar topics or
limitation. If both have similar topics or limitations you can say "Yes", otherwise "No". Your
answer should be "Yes" or "No" with explanation.

Prompt 3 = '''
Check whether ’list2’ contains a topic or limitation from ’list1’ or ’list1’ contains a topic or
limitation from ’list2’. Your answer should be "Yes" or "No" with explanation.

Figure 5: LLM as a Judge for each limitation. We use three distinct prompts to verify consistency.



Ground Truth Gen. Lim. GPT 4 Llama 3 User

Model Complexity Concerns: - There is
a question regarding whether the perfor-
mance gains are due to increased model
complexity rather than the proposed recur-
sive mixing approach.

Potential for Increased Complexity: Al-
though the method is described as simple,
the recursive nature of the approach may in-
troduce complexity in implementation and
understanding, particularly for practitioners
who may not be familiar with the underly-
ing concepts

Yes Yes Yes

Computational Complexity: The Dual-
aspect Attention mechanism significantly
increases computational complexity, which
may affect the performance and practicality
of the proposed method.

’**Complexity of the Model**: The DACT
arch, while innovative, introduces addi-
tional complexity compared to traditional
models’, ’This complexity may lead to
longer training times and increased compu-
tational resource requirements, which could
be a barrier for practical applications in
resource-constrained environments’

Yes Yes Yes

Insufficient Detailed Experimental Anal-
ysis: The paper primarily provides quantita-
tive results without a detailed experimental
analysis, which limits the understanding of
the findings.

Limited Discussion on Failure Cases:
While the paper discusses success and fail-
ure cases of existing methods, it may not
provide sufficient insight into the specific
conditions under which SCILL might fail,
limiting the understanding of its robustness.

Yes No Yes

Connection to Practical Methods: There
is an unknown connection between the theo-
retical findings and popular ensemble meth-
ods used in practice, which raises questions
about the practical relevance of the work.

Unexplored Variants of Ensemble Meth-
ods: The research does not explore other
ensemble methods beyond those mentioned,
such as boosting or stacking, which may
have different theoretical properties and
could provide additional insights into the
interpolating regime

No Yes Yes

Lack of Exploration of Alternative Meth-
ods: The paper does not sufficiently explore
or compare the performance of other meth-
ods like MFVI and SGLD in the context of
covariate shift, which could provide a more
comprehensive understanding of the prob-
lem.

Absence of Dataset Details: The dataset
section is marked as "nan," indicating a lack
of information about the datasets used for
experimentation’, ’This omission makes it
difficult to assess the validity and applicabil-
ity of the findings, as the choice of dataset
can significantly influence the results

No No No

Table 9: Examples of Annotator, GPT 4o-mini, and LLama judgement on whether a generated limitation should be
matched with a ground-truth limitation or not.



Ground Truth Limitations: Our goal is to provide comprehensive study of learning algorithms, including
their hyperparameters. However, our study is limited on the variety of other design choices to restrict the
experimental complexity. While we studied both synthetic and realistic image datasets, both these datasets
are relatively simple with the same small number of generative factors and each of the factor follows
uniform distribution. For learning algorithms, we focus on studying the inductive bias on the representation
format while fixing the model arch design which can impact the results. Moreover, we did not study
hyperparameters beyond those related to the latent representations. Specifically, we did not study how the
type and configurations of the optimizer and the batch size would change the results; instead, we followed
common setups in previous studies.
'''

LLM Extracted Limitations:
1. Here are the limitations extracted from the provided limitation:,
2. **Experimental Complexity**: The study is limited in the variety of design choices to reduce experi-
mental complexity.,
3. **Dataset Complexity**: The study utilizes relatively simple synthetic and realistic image datasets,
which have a small number of generative factors.,
4. **Generative Factors**: Each generative factor in the datasets follows a uniform distribution, limiting
the diversity of the data.,
5. **Model arch**: The focus is on studying the inductive bias related to the representation format while
keeping the model arch design fixed, which may influence the results.,
6. **Hyperparameter Scope**: The study does not explore hyperparameters beyond those related to latent
representations.,
7. **Optimizer and Batch Size**: The impact of different types and configurations of optimizers and batch
sizes on the results is not examined, as the study adheres to common setups from previous research.

Figure 6: Ground Truth Limitations and LLM Extracted Limitations in NeurIPS dataset.

Ground Truth Limitations: While our work provides useful starting point for understanding student
feedback,there are limitations to our work. Addressing these limitations will be an important area for
future research. Comments may not reflect real student feedback. The comments in our dataset are from
users who have chosen to post publicly on youtube. Addi- tionally,the comments may include features
specific to this online education setting. Thus,the comments may reflect real student comments from these
courses. There is selection bias in lecture sources. Sight includes lectures that may be drawn from the
most successful offerings of that course. The instructional quality may not be representative of typical
instruction. Thus,inferences drawn about the instruction should be interpreted with caution,as they might
not generalize to other lecture settings. We analyze only english comments. We analyze only english
comments because the lecture content is given in english and the authors are most comfortable with english.
As result,our rubric may not capture the types of feedback from nonenglish students watching lectures
taught in english. we annotate small subsample of the data to assess the validity of the automatic labels,we
conduct diagnostic study on small,randomly selected subset of the dataset,comprising approximately of the
comments. Our work aims to establish preliminary evaluation of the humanmodel agreement and model
annotations,and further validation of the automatic labels is necessary.
'''

LLM Extracted Limitations: Here are the limitations extracted from the provided limitation:

1. **Comments May Not Reflect Real Student Feedback**: The dataset consists of comments from
users who have chosen to post publicly on YouTube, which may not accurately represent genuine student
feedback.
2. **Features Specific to Online Education Setting**: The comments may include characteristics that are
unique to the online education context, potentially skewing the interpretation of student feedback.
3. **Selection Bias in Lecture Sources**: The lectures included in the analysis may be drawn from the
most successful offerings of a course, leading to a selection bias that does not represent typical instruc-
tional quality.
4. **Generalizability of Instructional Quality**: Inferences about instructional quality based on the selected
lectures should be made with caution, as they may not generalize to other lecture settings.
5. **Analysis Limited to English Comments**: The analysis is restricted to comments in English, which
may overlook feedback from non-English speaking students who are watching lectures taught in English.
6. **Small Subsample for Validity Assessment**: The study annotates a small subsample of the data to
assess the validity of automatic labels, which may not provide a comprehensive evaluation of the entire
dataset.
7. **Need for Further Validation of Automatic Labels**: The work establishes a preliminary evaluation of
human-model agreement and model annotations, indicating that further validation of the automatic labels is
necessary.

Figure 7: Ground Truth Limitations and LLM Extracted Limitations in ACL dataset.



OpenReview:
Reviewer 1: This paper tries to tackle the domain generalization problem by finding flat minima. It is
interesting to investigate the loss landscape of the DNNs on domain generalization problems. Original-
ity: The method proposed in this paper is mainly built on previous approaches such as SWA, and the
authors mention this in the submission. Quality: This submission is complete piece of work and the
claims are well supported by the empirical results. The evaluation is reasonable. Clarity: This submission
is well-written and easy to follow. Significance: This paper provides interesting empirical observations
and improves the state-of-the-art by applying their proposed new approach. Pros: The proposed method
consistently improves the model performance on domain generalization problems, and the proposed method
is flexible and can be easily integrated with other training approaches for better performance. Cons: The
generalization bound does not provide intuition for robust risk minimization..

Reviewer 2: Originality The paper is, perhaps by design, not particularly original. Rather, it makes the ob-
servation that an existing set of techniques with particular goal also has applications to different goal. This
is still, to the best of my knowledge, novel observation and contribution, and furthermore the modifications
made to SWA to arrive at SWAD also appear novel. Nevertheless, these modifications are relatively small,
so the method can still be viewed as version of the general idea of SWA, and thus originality is not the
paper’ strong suit. Quality The paper is of relatively high quality, primarily due to the empirical results.
did not carefully check the theory for correctness, but am unsure as to the significance of the theorems.
They appear rather similar to prior theoretical results on how flat minima can lead to better generalization,
but with some additional divergence terms thrown in as we are dealing with the DG setting...

Reviewer 3: Pros: The paper tackles an important and relevant problem to the ML community. The
proposed algorithm is relatively simple to implement in practice and perform well experimentally. Cons:
My major concern is wrt to the novelty of the work and the connection/motivation between the proposed
algorithm SWAD, domain generalization and the derived theoretical insights...
'''

LLM extracted OpenReview:
"1. . **Connection Between Theory and Method**: The relationship between the theoretical framework
presented in the paper and the SWAD algorithm is weak. There is a need for a clearer connection between
the flatness term in the equations and the algorithm’s performance.",
’2. . **Novelty of Theoretical Results**: The novelty of the theorem compared to classic results, such
as those from Ben-David, is questioned. The theoretical contributions do not significantly advance the
understanding of flat minima in the context of domain generalization.’,
’3. . **Generalization Bound Intuition**: The generalization bound provided does not offer sufficient
intuition for robust risk minimization (RRM), and it does not convincingly demonstrate that RRM is
superior to standard empirical risk minimization (ERM).’],
’4. . **Dependence on Previous Work**: The proposed method heavily relies on the existing SWA
approach, with only minor modifications. This raises concerns about the originality of the contribution.’,
’5. . **Theoretical Framework Limitations**: The reliance on VC dimension in the theoretical framework
is problematic, as it can be excessively large for the models used, especially in domain generalization
scenarios.’,
’6. . **Overlooked Details in Proofs**: There are concerns that important terms have been overlooked in
the technical proofs, which could undermine the validity of the results.’,
’7. . **Lack of Clear Motivation for SWAD**: The motivation for using SWAD over SWA is not clearly
articulated, making it difficult to understand the advantages of the proposed algorithm.’,
’8. . **Introduction of New Hyperparameters**: The proposed algorithm introduces additional hyperparam-
eters, which may complicate the implementation and tuning process.’,
’9. . **Limited Societal Impact Discussion**: While a limitations section is included, there is a lack of
discussion regarding the societal impacts of the research, although specific concerns were not identified.’,
"10. . **Potential for Broader Applications**: The method’s applicability beyond domain generalization is
not explored, which could limit its significance and impact in the broader machine learning community.

Figure 8: Tool extracted OpenReview and LLM Extracted OpenReview.
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