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ABSTRACT

The reproducibility of scientific articles is central to the advance-
ment of science. Despite this importance, evaluating reproducibil-
ity remains challenging due to the scarcity of ground truth data.
Predictive models can address this limitation by streamlining the
tedious evaluation process. Typically, a paper’s reproducibility is
inferred based on the availability of artifacts such as code, data,
or supplemental information, often without extensive empirical
investigation. To address these issues, we utilized artifacts of papers
as fundamental units to develop a novel, dual-spectrum framework
that focuses on author-centric and external-agent perspectives. We
used the author-centric spectrum, followed by the external-agent
spectrum, to guide a structured, model-based approach to quan-
tify and assess reproducibility. We explored the interdependencies
between different factors influencing reproducibility and found
that linguistic features such as readability and lexical diversity
are strongly correlated with papers achieving the highest statuses
on both spectrums. Our work provides a model-driven pathway
for evaluating the reproducibility of scientific research. The code,
methods, and artifacts for our study are publicly available. !

CCS CONCEPTS

« Computing methodologies — Machine learning; Model devel-
opment and analysis; « Information systems — Information
retrieval; Data extraction and integration; « Applied comput-
ing — Digital libraries and archives.

KEYWORDS

Reproducibility, Scientific Data, Science of Science

IQ https://github.com/reproducibilityproject/NLRR/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °24, October 21-25, 2024, Boise, ID, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10...$15.00
https://doi.org/10.1145/3627673.3679831

Sagnik Ray Choudhury
University of North Texas
Denton, Texas, USA
sagnikrayc@gmail.com

Hamed Alhoori
Northern Illinois University
Dekalb, Illinois, USA
alhoori@niu.edu

ACM Reference Format:

Akhil Pandey Akella, Sagnik Ray Choudhury, David Koop, and Hamed
Alhoori. 2024. Navigating the Landscape of Reproducible Research: A Pre-
dictive Modeling Approach. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management (CIKM ’24), Oc-
tober 21-25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3627673.3679831

1 INTRODUCTION

The abundance of open-source libraries, version control frame-
works, and publicly-available, archived datasets has made it easier
than ever to ensure transparency in the scientific process. How-
ever, this increased attention on research reproducibility [16, 23]
has not necessarily driven the scholarly community to implement
more transparent measures to make their work fully reproducible.
Instead, an inverse phenomenon is observed: surveys indicate that
scientists often believe many scholarly articles are irreproducible
[4], a sentiment that spans multiple fields [12].

Given the existing perception, it is crucial to develop a data-
driven approach that can establish trust in the reproducibility of
scientific papers. The reproducibility of research papers is a com-
plex issue [3, 8]. For example, consider a computational paper that
researchers fail to reproduce despite the publicly available code and
data, possibly due to the unavailability of specific libraries used in
the original code. Such a paper should not be categorized alongside
those that made no effort to ensure reproducibility. Therefore, re-
producibility should be viewed as a spectrum rather than a binary
classification. By acknowledging varying degrees of reproducibility,
we can elevate trust across the board and help identify common fac-
tors that contribute to reproducible research. This refined approach
reduces the collective burden on conferences, journals, publishers,
and the research community at large.

The initial step in constructing a reproducibility spectrum is
collecting existing ground truth about signals that indicate repro-
ducible work. This can include meta-studies confirming the repro-
ducibility of existing research [31], citations where methodologies
have been re-implemented [22], and reproducibility challenges
hosted by premier conferences [2, 7, 18, 25]. While these serve as
proxy measures for reproducibility, establishing definitive ground
truth for the reproducibility of scholarly work is challenging and
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limited to a few sources. For example, conferences such as OOP-
SLA, PLDI, and ISSTA have conducted reproducibility reviews [5]
to formally evaluate software artifacts and data. The practice of
evaluating artifacts was first established at SIGMOD 2008 [6, 24],
and various sub-disciplines within the Association for Comput-
ing Machinery (ACM) have since adopted similar policies to audit
artifacts. Collecting signals from these efforts was fundamental
for establishing the ACM badging process. In this process, a paper
may receive badges such as Artifacts Available, Artifacts Evaluated-
Reusable, and Results Reproduced. This policy acknowledges the
researchers’ efforts and incentivizes reproducibility.

While efforts like ACM Badging encourage the creation of repro-
ducible research, the current system places a significant burden on
the committees that evaluate artifact availability and reproducibil-
ity. However, the specific procedures for awarding reproducibility
badges can vary across venues. Moreover, much of the literature
on estimating and understanding reproducibility has relied on tra-
ditional modeling [32] and cohort-based statistical analysis [26].
While valuable, these approaches cannot scale effectively — assis-
tance of automated systems such as predictive models is needed.

In this paper, we present a predictive modeling study utilizing a
novel joint spectrum on reproducibility. This spectrum consists of
an author-centric framework (A) and an external-agent framework
(E). The author-centric framework identifies efforts made by au-
thors to enhance the transparency and accessibility of their papers
and is composed of three categories. The external-agent framework
characterizes the success of external reviewers’ efforts to reproduce
a paper and is composed of four categories.

In summary, our contributions are: First, we present a novel
approach to characterize reproducible research. Second, we analyze
various features extracted from the text and metadata of papers to
understand their relevance to reproducibility. Finally, we build an
interpretable model for predicting how reproducible a paper might
be. Unlike the current ad-hoc method of assigning subjective scores
by reviewers, our approach is more systematic and data-driven.

We acknowledge the ethical and moral implications of utilizing
a predictive model to assist in evaluating the quality and repro-
ducibility of research papers. However, our goal in this study is
to provide empirical evidence to support the use of such models
and to identify crucial aspects influencing a paper’s reproducibil-
ity assessment. We envision that the results of these models will
complement and support reviewers in navigating the landscape of
reproducible research rather than replacing human judgment.

2 BACKGROUND AND RELATED WORK

Researchers from the University of Arizona [10, 11] analyzed data
on computer systems research in an attempt to measure and under-
stand reproducibility. Although these efforts didn’t generate a con-
clusive hypothesis, they were instrumental in initiating a process
to observe the willingness of computer science researchers to share
code and data. Examining the conflicting attitudes of researchers
towards reproducibility [4] provided insights into the frequency
of successful and unsuccessful replications at both individual and
disciplinary levels. The scholarly community acknowledged the
reproducibility crisis, and there has been momentum for initiatives
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such as creating a manifesto on reproducibility [21] and estimating
reproducibility rates [9].

Reproducibility has been formalized and recognized by various
players involved in the scholarly publication process such as pub-
lishers, conferences, and peer reviewers. This recognition led to
the establishment of funding programs such as DARPA’s SCORE
(Systematizing Confidence in Open Research and Evidence), which
encourages researchers to develop assessment strategies to measure
replication and reproduction efforts that are central to the scientific
process. Additionally, many organizations introduced reproducibil-
ity checklists, most prominently ACM’s rollout of Artifact Review
and Badging ? to address reproducibility and enhance research
integrity across computational disciplines.

Literature that aligns with our goals for measuring and estimat-
ing reproducibility includes terminology papers [12, 14, 15, 28],
statistical studies quantifying factors influencing reproducibility
[26, 33], and predictive modeling studies [27, 29, 30, 32]. While these
studies set an appropriate foundation, they fall short in one or more
aspects to be considered conclusive in identifying reproducible
works preemptively. These limitations include:

(1) Lack of comprehensive methodology: Most quantitative
studies on reproducibility approach the analysis from a single
perspective, often relying on correlations, statistical tests, pre-
dictive models, or user surveys. Identifying the reproducibility
of a paper requires a comprehensive methodology capable of
detecting a wide range of signals.

(2) Potential impact on unseen data: Understanding the repro-
ducibility of scholarly works requires high standards of data
curation. Given the limited number of works verified as re-
producible, generalization becomes a challenge. It is crucial to
outline the broader impact and limitations of the quantitative
analysis on unseen data to validate the findings effectively.

(3) Optimal balance on subjective vs. objective attributes: Fac-
tors such as field of study, discipline, and venue significantly
influence the structure of scientific research and the method-
ologies used in experiments. It is essential to strike an optimal
balance between subjective and objective features when analyz-
ing the causes of reproducible outcomes to ensure that findings
about reproducibility are generalizable.

Given the significant challenges in gathering data on repro-
ducibility, especially in computational science, our current study
can serve as a primer for discussions on this topic. Building on
related works [1, 26, 32], our study provides a comprehensive mod-
eling approach to identify crucial aspects of papers that can predict
whether it would be reproducible.

3 BUILDING THE DATASET

Our goal is to create a dataset that can be quantitatively analyzed
in relation to artifacts and reproducibility. To achieve this, we col-
lected papers from the ACM Digital Library because it is a singular
comprehensive source with detailed information about the artifacts
and reproducibility of scholarly articles. The ACM introduced the
Artifact Reviewing and Badging policy, which assigns badges to in-
dicate when publications have been successfully reproduced. These

badges include:

Zhttps://www.acm.org/publications/policies/artifact-review-badging
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(1) Artifacts Available: Assigned when papers include artifacts
that have been made permanently retrievable.

(2) Artifacts Evaluated and Functional or Artifacts Evaluated
and Reusable: Assigned when the artifacts have been reviewed
and audited.

(3) Results Reproduced: Given when the primary findings of the
publication have been validated and independently verified in a
later investigation by a person or group other than the authors
without the use of author-supplied artifacts.

3.1 Data Collection
Our data collection process involved the following steps:

(1) Using the ACM digital library advanced search endpoint 3 to
list all scholarly articles in the ACM full-text collection that
have received the Results Reproduced badge.

(2) Conducting separate searches using the same ACM digital li-
brary advanced search endpoint for articles with each of the
following badges: Artifacts Available, Artifacts Evaluated and
Functional, and Artifacts Evaluated and Reusable.

(3) Identifying the venues of articles with the “Results Reproduced”
badge, and collecting unbadged articles from the same venues
that were published in the same respective issue/year.

This resulted in an initial collection of just over three thousand
badged articles. To maintain relevance, we included only papers
published between 2016 and 2023, aligning with the timeframe
when the ACM Badging policy was implemented. By filtering the
samples based on full-text availability and publication date, we fi-
nalized a dataset of 2,659 articles. These articles were categorized as
either Artifacts Available, Artifacts Evaluated & Functional, Artifacts
Evaluated & Reusable, Results Reproduced, or Unbadged. Unbadged
refers to papers from the same venues and years as Results Repro-
duced papers that were manually collected and included because
the authors chose not to submit them for artifact & reproducibility
evaluation.

The distribution of badges and the overlap between categories
are illustrated in Fig. 1. Interestingly, many badged articles have
multiple badge combinations. Fig. 1 shows that articles with the
badges Artifacts Available, and Artifacts Evaluated & Functional have
the largest intersection with 786 articles. In contrast, only 2 articles
have all the badges. Furthermore, most reproducible articles tend
to overlap with the Artifacts Available and Artifacts Evaluated &
Functional categories. Noticeably, the Unbadged set has the highest
unique category count, with 373 articles.

4 REPRODUCIBILITY SPECTRUM

We introduce a joint spectrum for evaluating reproducibility in
scientific papers as illustrated in Fig. 2. This spectrum is a result of
a data-driven, iterative development process. Initially, our concept
of the reproducibility spectrum categorized works as reproducible
or non-reproducible. However, this simplistic approach failed to
capture the nuances of scientific papers, as highlighted in Fig. 1.
Our data collection showed a much more complex landscape with
interesting sub-categories of papers. This process revealed the im-
portance of artifacts as a critical unit for assessing reproducibility.

3https://dl.acm.org/search/advanced
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Figure 1: Visualization of badge category overlaps for the
scholarly articles in our dataset.
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Figure 2: Joint framework to assess reproducibility levels in
scientific papers.

We finally constructed a version of the spectrum that is composed
of an author-centric framework and an external agent framework.
The author-centric framework focuses on the quality and availabil-
ity of artifacts provided by the authors. It recognizes the varying
degrees of effort authors put into making their work reproducible.
The external-agent framework captures the external validation of
a paper’s reproducibility based on the available artifacts. By sep-
arating these aspects, we were able to represent the multifaceted
nature of reproducibility in scientific publications.

4.1 Author-Centric Framework

The author-centric framework broadly captures the varying degrees
of effort and commitment authors invest to facilitate reproducibility.
The labels within this framework includes Aj:

o Apwa: Papers without artifacts
e Apynx: Papers with unvalidated artifacts
o Appx Papers with validated artifacts that are permanently archived
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The key difference between Apynx and Apax is that Apax in-
cludes validation of the archived artifacts. While Apynx may in-
clude artifacts that are either archival or non-archival, the crucial
difference between it and Apax is that they are not validated. There-
fore, papers with validated artifacts that are permanently archived
are considered the highest standard on our spectrum since they
represent papers where authors took the most proactive measures
to facilitate reproducibility evaluations.

We used the ACM badge (or the absence of one) to assign labels
in the author-centric framework as follows:

o Apyw 4: For all unbadged papers.

e Apynx: For papers with either the Artifacts Available or Artifacts
Evaluated & Functional badge.

o Apx: For papers with the Artifacts Evaluated & Reusable badge,
indicating the highest effort towards permanently archiving the
paper’s artifacts.

4.2 External Agent Framework

The external-agent framework presents the reproducibility evalu-
ation status of a paper based on the information available for an
independent team to assess and validate the original study’s find-
ings. This framework categorizes papers into the following units
E; on the spectrum:

ENRr: Papers that cannot be reproduced
EaR: Papers awaiting-reproducibility
ERe: Reproduced papers

ER: Reproducible papers

There are several points to notice. First, ENg papers lack any
artifacts or supplemental information necessary for initiating re-
producibility evaluation. Second, papers that are classified as Repro-
duced Eg, or Reproducible Er have obtained their status through
voluntary submission of artifacts to an evaluation committee. There
is an important distinction between papers labeled Eg, and those
labeled Eg, which is based on the archival nature of the artifacts
and the reproducibility status. If a paper has Apax N ERe, then it is
considered Eg. In contrast, if a paper has been reproduced by any
independent team, the assumption of its reproducibility status cap-
tured by Eg, is based on trust in the independent team’s evaluation.
In the external-agent framework, we assign labels as follows:

e Enrg: For all unbadged papers that cannot be reproduced due to
a lack of available artifacts.

o Eg: For papers that have artifacts but that have not yet been
reproduced.

o Epe: For Results Reproduced papers that do not have permanently
archived artifacts.

e Ep: For papers that have both the Results Reproduced badge and
the Artifacts Evaluated & Reusable badge.

Moving toward the rightmost end of either spectrum reflects a
higher level of effort by the authors. At the same time, the ACM
badges have interesting intersections as shown in Fig. 1. Specifi-
cally, a paper with a “Results Reproduced” badge need not have the
artifacts available.
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Table 1: Features with their respective categories.

Feature Category

Number of Algorithms (X;)  Structural
Number of Equations (X,
Google Scholar citations (X3
Availability of reproducibility checklist (X4
Mandatory artifact submission for papers
Reproducibility Awards (
Author Correspondence for Reproducibility (X7)  Venue

)

)  Structural

)

)

)

)

)
Mention of Zenodo Artifacts (Xg)  Artifact

)

)

)

)

)

)

)

)

Scholarly
( Venue
(Xs

Xs

Venue
Venue

Mention of GitHub Code Repository (Xy)  Artifact
Mention on Papers With Code GitHub Repository (Xj9)  Artifact
Mention on Papers With Code Datasets Artifact
Mention on Papers With Code Methods Artifact
Median Readability (X;3) Linguistic
Measure of lexical textual diversity (Xj4) Linguistic
Availability of Funding source (X;5) Miscellaneous
Availability of Supplemental information (X36) Miscellaneous

(X1
(X2

5 PRE-PROCESSING AND OBSERVATIONS

Previous work [26] suggests including a wide range of both subjec-
tive and objective features to predict reproducibility, whereas the
deep learning model from [32] focuses exclusively on the represen-
tational power of full-text embeddings. We selected a combination
of Structural, Scholarly, Venue, Artifact, Linguistic, and Miscella-
neous features, as detailed in Table 1. The Structural, Scholarly,
and Linguistic features are numerical, whereas Venue and Miscella-
neous features are categorical.

The metadata for each paper was collected from the ACM Digital
Library website using a customized web scraper written in Python
using the packages Selenium®, and BeautifulSoup®. Additionally,
we gathered complete metadata for all articles in our dataset using
Allen AT’'s Academic Graph API (1.0)°. We utilized a similar web
scraper to gather citations for each paper from Google Scholar,
covering citations up to the end of 2023. To gather Miscellaneous
and Venue features, we examined the individual article webpages.
Miscellaneous features include details about funding and additional
supplemental information such as videos, slides, and screen record-
ings. The Structural and Linguistic features were derived using the
full texts of the article, which were processed by passing the PDFs
through Allen AI’s Science Parse’.

“Readability” is a linguistic concept that measures how easily a
reader can understand a written text. It considers the complexity
of vocabulary, sentence structures, and overall text composition.
The Median Readability was calculated in two steps. First, we used
Python’s Textstat 8 package to compute various readability metrics,
including the Flesch Reading Ease Score, SMOG Index, Coleman-
Liau Index, Automated Readability Index, Dale-Chall Readability
Score, Linsear Write Formula, and Fog Scale (Gunning FOG For-
mula). Then, we calculated a weighted normalized score (ranging
from 0 to 1) using the hypothetical minimum and maximum val-
ues for all these measures and took the median. Lexical diversity,

*https://pypi.org/project/selenium/
Shttps://pypi.org/project/beautifulsoup4/
®https://api.semanticscholar.org/api-docs/graph
https://pypi.org/project/science-parse-api/
8https://pypi.org/project/textstat/
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which reflects the variety and richness of the vocabulary used in a
text, was quantified using the Measure of Textual Lexical Diversity
(MTLD) [20]. As with readability, we employed the Textstat package
to calculate this measure across the full text of each document.

Feature Statistic p-value

Median Readability 0.952613  1.565888e-28
Number of Algorithms 0.554016  1.731140e-63
Number of Equations 0.244451  8.599141e-74
Google Scholar citations 0.100468  2.239210e-77
Measure of lexical textual diversity — 0.855591  4.103254e-44

Table 2: Shapiro-Wilk Test for assessing the normality of
numerical features in scholarly papers.

We observed several interesting patterns building our dataset.
First, 1.76% of articles have a dataset mentioned on PapersWithCode,
and 1.01% reference a method on PapersWithCode. Additionally,
9.43% of articles have an official GitHub repository linked to the
paper on PapersWithCode. This information was gathered by cross-
referencing Arxiv IDs and paper titles with the PapersWithCode
API °. Further textual analysis revealed that 41.03% of the articles
mention a GitHub repository in the full text (excluding the “Ref-
erences” section). We also found that 16% of the articles reference
Zenodo in the full text, pointing to artifacts related to the study.
Moreover, 32.49% of the articles provide supplemental informa-
tion such as code, audio, or video files on the ACM Digital Library.
Finally, 50.1% of the articles mention funding sources, with the
National Science Foundation, Engineering and Physical Sciences
Research Council, and Deutsche Forschungsgemeinschaft being the
most frequently cited agencies.

Feature Statistic p-value

Median Readability 4.990988  6.862850e-03
Number of Algorithms 36.773371  1.764600e-16
Number of Equations 5.258889  5.255375e-03
Google Scholar citations 1.714010  1.803412e-01
Measure of lexical textual diversity ~ 1.290552  2.752913e-01

Table 3: Levene’s Test for Homogeneity of Variances grouped
by the author-centric framework.

6 STATISTICAL TESTS

The foundation of our predictive modeling study is based on a sta-
tistical analysis of the numerical features X outlined in Table 1. This
analysis involved conducting tests for normalization and variance
of groups using the Shapiro-Wilk test and Levene’s test, followed
by a significance test using the Kruskal-Wallis test. Together, these
tests ensure the statistical robustness of our feature set by verifying
the assumptions of normality and homogeneity of variance, which
are important for selecting appropriate predictive models. Addi-
tionally, these tests assisted us in discerning significant differences
in features observed in both frameworks across different groups
of scholarly papers. Finally, these tests guided our choices to pick
predictive models that are well-suited to the data distribution.

https://paperswithcode.com/api/v1/docs/
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Feature Statistic p-value

Median Readability 4.153057  6.039707e-03
Number of Algorithms 29.537040  8.830013e-19
Number of Equations 6.959335  1.158253e-04
Google Scholar citations 4.195924  5.690491e-03
Measure of lexical textual diversity =~ 0.283903  8.370575e-01

Table 4: Levene’s Test for Homogeneity of Variances grouped
by the external-agent framework.

The results of the Shapiro-Wilk test for assessing the normality
of distributions and Levene’s test for evaluating variance across
groups are presented in Tables 2 to 4. The Shapiro-Wilk test results
indicate that the p values from Table 2 are < 0.05, and we reject
the null hypothesis that these features are normally distributed.
This is an important observation to guide our choices in selecting
predictive models such as Random Forest and Decision Trees. Tree-
based models perform well in utilizing non-normal features with
inequalities in variance when predicting the target variable. This
can be evidenced from our results when comparing models built
with the feature set X both in Table 7, and Table 8. Additionally, this
suggests that parametric models like Multi-layer Perceptrons or
Logistic Regression would only be advantageous if feature scaling
is applied (Xgcaled) to normalize the features.

Feature Statistic p-value

Median Readability 693.261011  2.885920e-151
Number of Algorithms 43.248067  4.062576e-10
Number of Equations 15.267781  4.837751e-04
Google Scholar citations 35.751811 1.724221e-08
Measure of lexical textual diversity =~ 94.078257  3.725342e-21

Table 5: Kruskal-Wallis test on the author-centric framework.

The results from Levene’s test for homogeneity of variances in
the author-centric framework Table 3, and the external-agent frame-
work Table 4 indicate that all features, except lexical diversity, show
statistically significant differences in the non-homogenous nature
of features across groups. The significant results from Levene’s test
in both frameworks for several features (particularly readability,
algorithms, and equations) suggest that these features differ not just
in their average values but also in their variability among different
categories of papers. This could have implications for how these
features influence the artifact and reproducibility assessments in
scholarly papers in our dataset.

Feature Statistic p-value

Median Readability 697.771459  6.386612e-151
Number of Algorithms 54.607980  8.324174e-12
Number of Equations 28.063838  3.521685e-06
Google Scholar citations 142.053160  1.363764e-30
Measure of lexical textual diversity — 108.002775  2.952022e-23

Table 6: Kruskal-Wallis test on external-agent framework.

We used significance tests such as the Kruskal-Wallis test to make
statistical inferences about the variability of feature values across
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papers grouped by the author-centric and external-agent frame-
works. Since our numerical features are not normally distributed, it
is suitable to use a non-parametric test like Kruskal-Wallis. The re-
sults from Table 5 and Table 6 indicate significant differences for all
the numerical features across groups of papers in both frameworks.
The low p values (< 0.05) suggest that these features are valuable
for predictive models, as their variability can help distinguish pa-
pers from different parts of the spectrum. In summary, these results
support our intuition that structural, linguistic, and scholarly fea-
tures are useful for predicting artifact quality and reproducibility
assessment status.

7 PREDICTIVE MODELS

Our goal is to build interpretable predictive models to estimate
the reproducibility of scientific research. We develop two distinct
multi-class predictive models, ¢u1hor and Peyternal, to predict
the label (e.g., ER) of a paper in the author-centric and external-
agent frameworks. We experimented with several predictive models.
The results from the Shapiro test in Table 2 indicated that tree-
based models such as Gradient Boosting, AdaBoost, Random Forest,
and Decision Tree algorithms were more suitable. Non-parametric
models such as Logistic Regression and Neural Networks were also
used after applying a simple feature scaling technique using the
mean and standard deviation.

The remarkable effectiveness of feature representations from
large language model embeddings cannot be overstated. By using
document representations from text-embedding models such as
Davinci from OpenAlI, and SPECTER and Longformer from AllenAl,
we can capture the full semantic context of scholarly texts. Since
scholarly documents often exceed the maximum sequence length
allowed by these models, we split the documents and took the
average of the embeddings as the final representation. We used two
models for these representations: 1. A VanillaNN, which is a linear
classifier, and 2. An MLP (multi-layer perceptron) with a hidden
layer.

7.1 Results for Author-Centric Framework

We evaluate the effectiveness of our predictive models for the
author-centric framework labels using classification metrics such
as accuracy and F1 scores. The results are presented in Table 7. As
mentioned in Section 4, the @, 410 models predict one of three
labels: Apyy 4 (papers without artifacts), Apynx (papers with ar-
tifacts that aren’t permanently archived), and Apax (papers with
artifacts that are permanently archived). While it might seem that
extracting artifact locations from paper texts would make a pre-
dictive model unnecessary, our experiments show that features
designed to extract such information are not the best predictors.
This highlights that predicting artifact availability or quality is a
more challenging task than it appears.

The tree-based models, including Gradient Boosting, AdaBoost,
Random Forest, and Decision Tree, demonstrate strong performance
on the original feature set X, with accuracy scores ranging from
78% to 83% and macro-averaged F1 scores between 66 % and 74 %.
These results demonstrate the effectiveness of machine learning
algorithms in distinguishing between papers with different levels of
artifact availability, which is a critical aspect of reproducibility. In
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particular, the high F1 scores for Apynx and Apyy 4 indicate that
these models are able to accurately differentiate between papers
with and without permanently archived artifacts. On the other hand,
non-parametric models like Logistic Regression and VanillaNN
applied to the scaled feature set X.a1eq show relatively weaker
performance, which may be attributed to the loss of information
during feature scaling. Finally, models leveraging text embeddings
show promising results, particularly the MLP model with the ADA-
002 embeddings, which achieves an accuracy score of 85% and a
macro-averaged F1 score of 77%.

7.2 Results for External-Agent Framework

The results for models predicting the external agent framework la-
bels are presented in Table 8. As mentioned in Section 4, the models
here predict one of four labels: EnNg (papers that cannot be re-
produced), E4R (papers awaiting reproducibility), Eg, (reproduced
papers), and Eg (reproducible papers). Overall, the best-performing
model is an MLP that uses Longformer embeddings, which achieved
the highest accuracy of 79%, along with comparably high F1 overall
scores, and individual class-specific scores. However, parametric
models that used scaled features Xg¢,1¢q demonstrated minimal
predictive advantage of representational learning models.

The tree-based models, such as Gradient Boosting, Random For-
est, and Decision Tree, continued to perform well with accuracy
scores ranging from 69% to 75% and macro-averaged F1 scores
between 67% and 72%. Although these models are effective in dis-
tinguishing between papers that cannot be reproduced (Exg) and
papers awaiting reproducibility (Esg), improvements are needed
in predicting reproduced Eg, and reproducible Eg papers. The key
takeaway from Table 8 is the superior performance of models us-
ing embeddings (Xemp), particularly those based on Longformer
and ADA-002, compared to both basic models (X) and those using
scaled features (Xgcaled)- Although this suggests that the semantic
understanding provided by these embeddings is crucial in discern-
ing subtle differences in paper statuses related to reproducibility,
further investigation about reliability and robustness in predictions
is necessary to fully understand model confidence (Section 7.4).

7.3 Important features for ¢,y:10r and Pexrernal

One of the contributions of this study is the identification of fea-
tures that correlate well with the reproducibility of a paper. As
shown in Table 7 and Table 8, the Random Forest model consis-
tently performs best in terms of both accuracy and overall F1 score
across both frameworks. As a result, we selected this model for fur-
ther analysis in the feature importance study. We collected the Gini
impurity importance for all features in the Random Forest model
(in both frameworks) and ranked them in Fig. 3. Linguistic mea-
sures such as readability and lexical diversity strongly influence the
predictive outcomes of the models. Intuitively, clarity in language
and thoroughness in explaining concepts (modeled through read-
ability and lexical diversity features) should neither be correlated
with the quality of artifacts nor should it affect the reproducibility
status of a paper. However, the influence of these features on the
predictive models, especially Random Forest, suggests otherwise.
This surprising finding has also been observed in previous studies
[13, 17, 19].
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Model Acc  Fi(Apwa) Fi(Apunx) Fi(Apax) Fi(macroavg) F;(weightedavg)
X

Gradient Boosting 0.83 0.82 0.89 0.52 0.74 0.82
AdaBoost 0.78 0.77 0.86 0.34 0.66 0.76
Random Forest 0.83 0.75 0.90 0.57 0.74 0.82
Decision Tree 0.79 0.74 0.87 0.53 0.71 0.79
Xiscaled

Logistic Regression 0.71 0.14 0.84 0.37 0.45 0.66
VanillaNN 0.78 0.66 0.86 0.54 0.69 0.78
Xemb

SimpleNN - Xemb(ADA-002) 0.80 0.76 0.86 0.36 0.67 0.77
SimpleNN - XembspecTER)  0.68 0.32 0.83 0.26 0.47 0.65
SimpleNN - Xeip(Longformer)  0-83 0.97 0.89 0.08 0.65 0.67
MLP - Xemb(ADA-002) 0.81 0.83 0.88 0.51 0.74 0.81
MLP - Xemb(SPECTER) 0.68 0.29 0.82 0.33 0.48 0.66
MLP - Xemb(Longformer) 0.85 0.97 0.90 0.43 0.77 0.83

Table 7: Evaluation metrics for models predicting the author-centric framework labels.

Model Acc  Fi(ENr) Fi(Ear) Fi(Ere) Fi(ER) Fi(macroavg) F;(weightedavg)
X

Gradient Boosting 0.73 0.81 0.78 0.60 0.66 0.71 0.73
AdaBoost 0.57 0.72 0.59 0.24 0.60 0.54 0.59
Random Forest 0.75 0.74 0.81 0.63 0.68 0.72 0.75
Decision Tree 0.69 0.77 0.76 0.57 0.58 0.67 0.69
Kscaled

Logistic Regression 0.55 0.07 0.66 0.15 0.53 0.35 0.50
VanillaNN 0.70 0.69 0.78 0.60 0.59 0.66 0.70
Xemb

SimpleNN - X.mpapa-002) 0.75 0.79 0.81 0.44 0.68 0.68 0.74
SimpleNN - XembsprcTer)  0.57 0.30 0.70 038 0.54 0.48 0.57
SimpleNN - Xemb(Longformer)y ~ 0-73 0.97 0.77 0.13 0.59 0.62 0.70
MLP - Xemb(ADA-002) 0.74 0.83 0.81 0.52 0.63 0.70 0.74
MLP - Xemb(SPECTER) 0.54 0.35 0.68 0.40 0.47 0.47 0.55
MLP - Xemb(Longformer) 0.79 0.97 0.82 0.60 0.70 0.77 0.79

Table 8: Evaluation metrics for models predicting the external agent labels.

Among the top five features, we also observe the importance of
citations and other venue-based features in both models. Citations
act as a latent variable connecting a scholarly paper’s impact and
credibility. Highly cited papers might be considered more repro-
ducible due to peer validation, but results from [32] suggest there
is more room for introspection. The justification for having venue-
based features, such as Reproducibility Awards, is to assess if such
a variable serves the purpose of motivating authors to put more
effort into making the artifacts available and consequently volun-
tarily opting in for reproducibility evaluation. Other categorical
features that measure connections to references of supplemental
information either within a paper or external sites such as Zen-
odo, Github, and PapersWithCode appear to have relatively lower
rankings. Direct references to repositories where code and artifacts
are stored are expected to be significant, given their role in facili-
tating artifact evaluation and reproducibility. However, the lower
Gini importance suggests that additional factors are influencing
the outcomes. Further research and experimentation are needed to
uncover more latent variables within both frameworks.

7.4 Model confidence for ¢, ;10 and Pexrernal

Understanding the confidence of predictive models is critical for
establishing reliability. The confidence calibration curves for our
models in are shown in Figs. 4 and 5. The bigger plots on the left
show model confidence curves with mean predicted probabilities
P = n—lk Z?:kl pir on the x axis, and fraction of positives observed
through an indicator function I(ysesz,; = k) on the y-axis, which
evaluates whether the predicted category k aligns with the actual
category of each paper. In other words, these plots visualize the frac-
tion of papers correctly identified within each category as a function
of the predicted probabilities, allowing us to assess the calibration of
the models across different categories of papers. The smaller plots
on the right side of the confidence curves are histograms that show
the overall distribution of predictive probabilities for each category
of papers. These plots are useful for understanding the distribution
of confidence the models have in their predictions. Fig. 4 suggests
that in the author-centric framework, a Random Forest model is
reliable only when it predicts if papers have permanently archived
artifacts. Also, the mean predicted probabilities in the range 0.2-0.6
suggest it is not confident in predicting Apy 4, or Apynx. The
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Figure 3: Most important features for predicting labels in the author-centric, and external-agent frameworks.
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model, external-agent centric framework (right).

Longformer model (MLP with longformer, Fig. 5) shows a weak-
ness in reliability compared to the Random Forest model. It shows
consistent under- or overconfidence across the author-centric la-
bels, especially at higher probabilities for Apy4. Most importantly,
Fig. 5 suggests that despite its effectiveness in evaluation metrics,
the Longformer model is less effective at assessing papers without
artifacts, potentially due to a lack of distinguishing features in the
embeddings.

In the external-agent framework, for papers that cannot be re-
produced (ENR), we notice that Longformer model (Fig. 5) is ex-
tremely under confident, predicting lower probabilities than the
actual outcomes. Additionally, the confidence of the Longformer,

when predicting papers awaiting reproducibility (E4R), or Repro-
duced (Ege), or Reproducible (ER) papers, is variable, especially at
higher probabilities, suggesting slight inconsistencies in predictive
robustness, and reliability. The Random Forest model, on the other
hand (Fig. 4) shows a better alignment in predictive probabilities
against the fraction of positives for ENR, E4Rr, Ege, and Eg. This
suggests the Random Forest model is better when compared to an
MLP with Longformer representations, specifically when we talk
about reliability, robustness, and consistency of the labels predicted
across both frameworks. The histograms corroborate the reliability
curves, indicating that the Random forest model not only predicts
with high confidence but also aligns these predictions closely with



Navigating the Landscape of Reproducible Research: A Predictive Modeling Approach

CIKM °24, October 21-25, 2024, Boise, ID, USA

Capturing the confidence of ¢.malLongformer] when
predicting the external-agent centric labels on D,

Capturing the confidence of ¢,.u..- [Longformer] when 700
icti H External-agent spectrum 600
predlctlng the author centric labels on Dy 700 4 | =Papers that cannot be reproduced (n = 109) jgg
‘Author-centric spectrum 600 L1.0f = k= Paper Awaiting- ibility (n=303) 300
1.0l #=Pavers without artifacts (n = 109) s00 B-m = Reproduced paper (n=57) 200
“[|a_a k=Papers with artifacts F a00 ©-0 k=Reproducibile paper (1 =239) 100
that aren't permanantly archived (n =553) / 300 Hypothetical ¢....... With perfect calibration I %.0 0.2 0. 0. 0.8 1.0
&= Papers with artifacts / 200 A Papers that cannot be reproduced
. ©% that are permanantly archived (n=136) ° o / 00 =
~ 0.8 Hypothetical ¢, with perfect calibration I / o 140
= / 00 02 04 06 08 10 / s
P Papers without artifacts ° ° 80
£ / = 60
3 / = 40
= / 200 & 0.6 20
o
9 06 ; 250 5 %o 02 o4 06 08 10
g / 200 y=] Paper Awaiting-Reproducibility
k= ¢ 150 9
a I I3 700
600
S « 0.4 500
Soa » 5 A s
o 0 c 300
c 00 02 04 06 08 10 <] 200
51 Papers with artifacts 5 100
=1 that aren't permanantly archived ° o
5 [P %0 02 o4 08 08 10
© 0.2 [ Reproduced paper
= 350
300 250
250 200
200 ¢ 150
/ 150
0.0 e 0.0 100
s0 50
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0 0001020304 0506070809

Papers with artifacts

Mean predicted probability p;, for ¢uumer that are permanantly archived

Mean predicted probability p;. for ¢.uiema Reproducibile paper

Figure 5: Confidence calibration of @,,¢hor Longformer-MLP model, author-centric framework (left) and @eyternal Longformer-

MLP model, external-agent centric framework (right).

the actual outcomes, which is critical for downstream applications
using predictive models for analyzing reproducibility.

8 CONCLUSION & FUTURE WORK

We define a spectrum to assess the reproducibility of scientific
papers, collect a new dataset, and establish a framework for au-
tomatic prediction of the reproducibility of scientific papers. Our
work presents a thorough analysis of predictive models that in-
clude feature importance tests and confidence calibration curves.
We draw two surprising conclusions: 1. Linguistic features such
as readability and lexical diversity are strong predictors for both
the quality of artifacts mentioned in a paper and their reproducibil-
ity status, and 2. Neural nets built on text embeddings from large
language models are accurate but not robust.

This work can be improved and extended in various ways. The
predictive models can be improved, and the Neural nets can be
made more robust. The unreasonable effectiveness of linguistic fea-
tures can be investigated. Using a model or algorithmically-driven
intelligent system to reward “reproducible” research practices, how-
ever, can be problematic, and we must have foresight in developing
an approach toward quantifying reproducibility to avoid potential
ethical problems. For example, suppose a model or system finds
that the language of a paper positively affects its likelihood to be
reproducible. It may thus penalize research simply because of the
language in which the paper is written. Similarly, a model or system
could identify institutions it associates with more reproducible re-
sults. Then, papers submitted from that institution might be labeled
by the model as reproducible, without considering their content.
Certainly, these are not outcomes we would expect or desire of
such an algorithm or model. Code and data artifacts are critical for
reproducibility evaluation, and papers without artifacts and papers
that cannot be reproduced represent a sizeable portion of scientific
literature. While it can be argued that features such as the Number
of Algorithms, Equations, and Reproducibility checklists are aligned
more toward ACM’s Badging policy, the foundational principles

of reproducibility are universal and not exclusive to ACM. The
structure of computational science adopted by most researchers in-
volves artifacts. These artifacts, when made available, enable other
researchers to verify, build upon, and extend the original work.
This process of verification and extension, facilitated by accessible
artifacts, creates a pathway for more generalizable findings. Utiliz-
ing our spectrum through the author-centric and external-agent
framework for a larger multi-disciplinary study will offer valuable
insights into the broader landscape of scientific research repro-
ducibility. Limitations: Generalizing the findings of our study to
other disciplines is both data-intensive and challenging. While it
is true that the composition of the ACM dataset and predictive
modeling experiments cater to a specific category of computational
science papers, the heuristics used to create the joint spectrum for
reproducibility and the catalog of experiments we presented show
a tangible pathway for expanding the study across other scientific
disciplines. Despite the limitations, our work offers robust findings
across the experiments, affirming the importance of “readability”
for reproducibility.
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